

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-22/0247 of 3 June 2022

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

CELO Injection system ResiFIX Pure Epoxy for rebar connection

Systems for post-installed rebar connections with mortar

CELO Befestigungssysteme GmbH Industriestraße 6 86551 Aichach DEUTSCHLAND

Werk2, Deutschland

19 pages including 3 annexes which form an integral part of this assessment

EAD 330087-01-0601, Edition 06/2021

European Technical Assessment ETA-22/0247

Page 2 of 19 | 3 June 2022

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

European Technical Assessment ETA-22/0247

Page 3 of 19 | 3 June 2022

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The subject of this European Technical Assessment is the post-installed connection, by anchoring or overlap connection joint, of reinforcing bars (rebars) in existing structures made of normal weight concrete, using the "CELO Injection system ResiFIX Pure Epoxy for rebar connection" in accordance with the regulations for reinforced concrete construction.

Reinforcing bars made of steel with a diameter ϕ from 8 to 40 according to Annex A and injection mortar ResiFIX Pure Epoxy EPSF are used for rebar connections. The rebar is placed into a drilled hole filled with injection mortar and is anchored via the bond between rebar, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European assessment Document

The performances given in Section 3 are only valid if the rebar connection is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the rebar connection of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance under static and quasi-static loading	See Annex C 1
Characteristic resistance under seismic loading	No performance assessed

3.2 Safety in case of fire (BWR 2)

Essential characteristic Performance	
Reaction to fire	Class A1
Resistance to fire	See Annex C 2

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Document EAD No. 330087-01-0601, the applicable European legal act is: [96/582/EC].

The system(s) to be applied is (are): 1

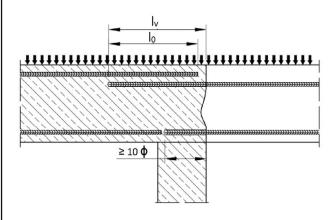
European Technical Assessment ETA-22/0247

Page 4 of 19 | 3 June 2022

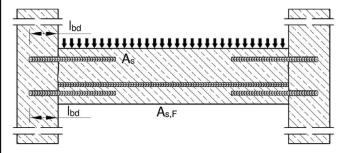
English translation prepared by DIBt

5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

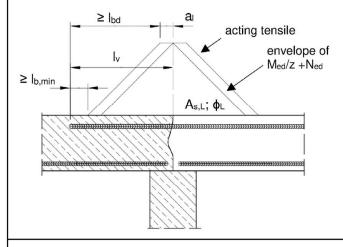
Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

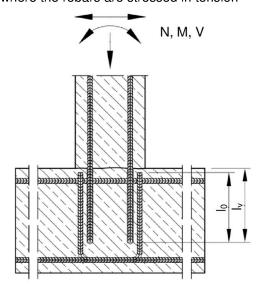

Issued in Berlin on 3 June 2022 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section beglaubigt: Baderschneider



Installation post installed rebar


Figure A1: Overlapping joint for rebar connections of slabs and beams


Figure A3: End anchoring of slabs or beams (e.g. designed as simply supported)

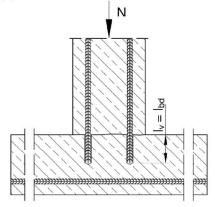

Figure A5: Anchoring of reinforcement to cover the line of acting tensile force

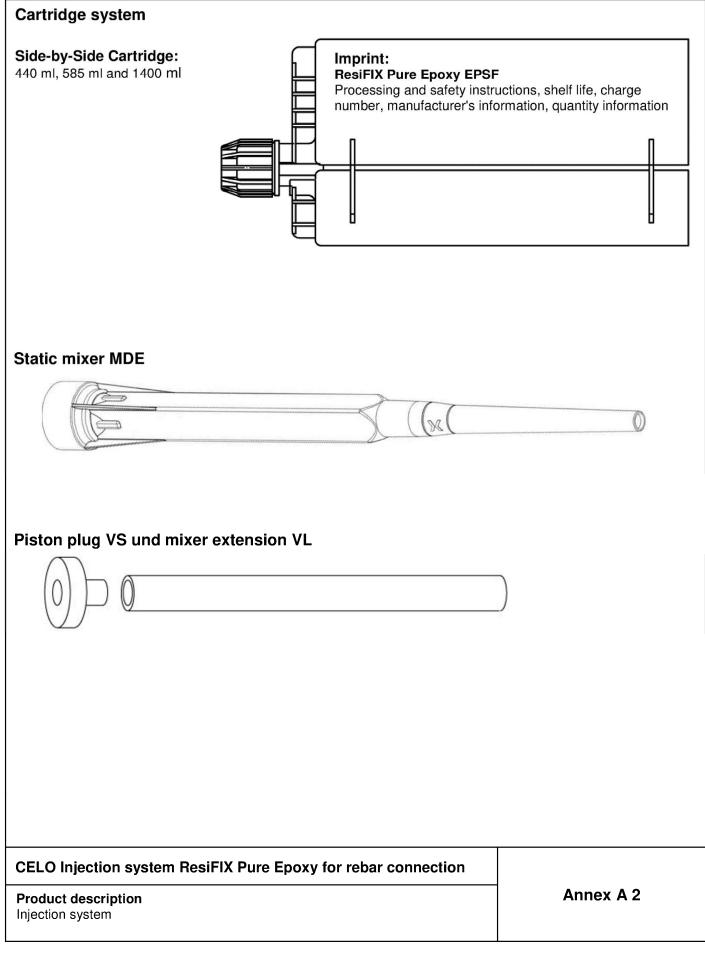
Figure A2: Overlapping joint at a foundation of a wall or column where the rebars are stressed in tension

Figure A4: Rebar connection for components stressed primarily in compression. The rebars sre stressed in compression

Note to Figure A1 to A5:

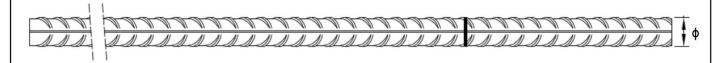
In the Figures no transverse reinforcement is plotted, the transverse reinforcement shall comply with EN 1992-1-1:2004+AC:2010.

Preparing of joints according to Annex B 2


CELO Injection system ResiFIX Pure Epoxy for rebar connection

Product description

Installed condition and examples of use for rebars


Annex A 1

Reinforcing bar (rebar): ø8 up to ø40

- Minimum value of related rip area f_{R,min} according to EN 1992-1-1:2004+AC:2010
- Rib height of the bar shall be in the range $0.05\phi \le h_{rib} \le 0.07\phi$ (ϕ : Nominal diameter of the bar; h_{rib} : Rib height of the bar)

Table A1: Materials Rebar

Designation	Material
Rebar EN 1992-1-1:2004+AC:2010, Annex C	Bars and de-coiled rods class B or C f_{yk} and k according to NDP or NCI of EN 1992-1-1/NA $f_{uk} = f_{tk} = k \cdot f_{yk}$

CELO Injection system ResiFIX Pure Epoxy for rebar connection	
Product description Materials Rebar	Annex A 3

Specification of the intended use			
Anchorages subject to:		Working life 50 years	Working life 100 years
HD: Hammer drilling HDB: Hammer drilling with hollow drill bit	static and quasi-static loads	Ø8 to Ø40	No performance assessed
	seismic action	No performance assessed	No performance assessed
CD: Compressed air drilling DD: Diamond drilling	Fire exposure	Ø8 to Ø40	No performance assessed
Temperature Range:	(max long-term ter	- 40°C to +80°C nperature +50 °C and max short-	term temperature +80 °C)

Base materials:

- Reinforced or unreinforced normal weight concrete according to EN 206:2013 + A1:2016.
- Strength classes C12/15 to C50/60 according to EN 206:2013 + A1:2016.
- Maximum chloride content of 0,40% (CL 0.40) related to the cement content according to EN 206:2013 + A1:2016.
- Non-carbonated concrete.

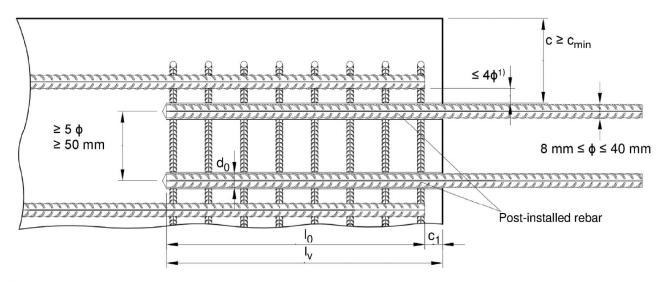
Note: In case of a carbonated surface of the existing concrete structure the carbonated layer shall be removed in the area of the post-installed rebar connection with a diameter of $\phi + 60$ mm prior to the installation of the new rebar.

The depth of concrete to be removed shall correspond to at least the minimum concrete cover in accordance with EN 1992-1-1:2004+AC:2010. The foregoing may be neglected if building components are new and not carbonated and if building components are in dry conditions.

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the forces to be transmitted.
- Design according to EN 1992-1-1:2004+AC:2010, EN 1992-1-2:2004+AC:2008 and Annex B 2.
- The actual position of the reinforcement in the existing structure shall be determined on the basis of the construction documentation and taken into account when designing.

Installation:


- Dry or wet concrete. It must not be installed in flooded holes.
- Overhead installation allowed.
- Hole drilling by hammer drill (HD), hollow drill (HDB), diamond drill (DD) or compressed air drill mode (CD).
- The installation of post-installed rebar resp. tension anchors shall be done only by suitable trained installer and under supervision on site; the conditions under which an installer may be considered as suitable trained and the conditions for supervision on site are up to the Member States in which the installation is done.
- Check the position of the existing rebars (if the position of existing rebars is not known, it shall be determined using a rebar detector suitable for this purpose as well as on the basis of the construction documentation and then marked on the building component for the overlap joint).

CELO Injection system ResiFIX Pure Epoxy for rebar connection	
Intended use Specifications	Annex B 1

Figure B1: General construction rules for post-installed rebars

- Only tension forces in the axis of the rebar may be transmitted.
- The transfer of shear forces between new concrete and existing structure shall be designed additionally according to EN 1992-1-1:2004+AC:2010.
- The joints for concreting must be roughened to at least such an extent that aggregate protrude.

¹⁾ If the clear distance between lapped bars exceeds 4φ, then the lap length shall be increased by the difference between the clear bar distance and 4φ.

The following applies to Figure B1:

c concrete cover of post-installed rebar

concrete cover at end-face of existing rebar

c_{min} minimum concrete cover according to Table B1 and to EN 1992-1-1:2004+AC:2010, Section 4.4.1.2

φ diameter of post-installed rebar

 I_0 lap length, according to EN 1992-1-1:2004+AC:2010, Section 8.7.3

 I_v effective embedment depth, $\ge I_0 + c_1$ d₀ nominal drill bit diameter, see Annex B 4

CELO Injection system ResiFIX Pure Epoxy for rebar connection	
Intended use General construction rules for post-installed rebars	Annex B 2

Table B1:	Minimum concrete cover c _{min} 1) of post-installed rebar and tie rod
	depending of drilling method

Drilling method	Rebar diameter	Without drilling aid	With dri	lling aid
HD: Hammer drilling	< 25 mm	30 mm + 0,06 · l _v ≥ 2 ф	30 mm + 0,02 · l _V ≥ 2 φ	
HDB: Hammer drilling with hollow drill bit	≥ 25 mm	40 mm + 0,06 · l _V ≥ 2 φ	40 mm + 0,02 · l _V ≥ 2 φ	Drilling aid
DD: Diamond drilling	< 25 mm	Drill rig used as drilling	30 mm + 0,02 · l _v ≥ 2 φ	
DD: Diamond drilling	≥ 25 mm	aid	40 mm + 0,02 · l _V ≥ 2 φ	
CD: Compressed air	< 25 mm	50 mm + 0,08 · l _v	50 mm + 0,02 · I _v	
drilling	≥ 25 mm	60 mm + 0,08 · l _v ≥ 2 ф	60 mm + 0,02 · l _v ≥ 2 ф	

¹⁾ see Annex B 2, Figure B1

Comments: The minimum concrete cover acc. EN 1992-1-1:2004+AC:2010 must be observed.

Table B2: Dispensing tools

Cartridge type/size	На	Pneumatic tool	
Side-by-side cartridges 440 and 585 ml			
	e.g. SA 296C585	e.g. Typ H 244 C	e.g. Typ TS 444 KX
Side-by-side cartridges 1400 ml	-	-	e.g. Typ TS 471

All cartridges could also be extruded by a battery tool.

CELO Injection system ResiFIX Pure Epoxy for rebar connection	
Intended use Minimum concrete cover Dispensing, cleaning and installation tools	Annex B 3

Table B3:	Brushes, piston plugs, max anchorage depth and mixer extension, hammer
	(HD), diamond (DD) and compressed air (CD) drilling

								187		•				
Drill					d _{b,min}			Cartridge: 44	0 ml or	585 ml	Cartridge : 1400 ml			
Bar size	t	oit - Ø		d Brus		min. Brush -	Piston plug		Hand or battery tool		Pneumatic tool		Pneumatic tool	
ф	HD	DD	CD	Brush - Ø		Ø	piug	I _{v,max}	Mixer extension	I _{v,max}	Mixer extension	I _{v,max}	Mixer extension	
[mm]		[m	m]		[mm]	[mm]		[mm]		[mm]		[mm]		
8	1	0	_	RB10	11,5	10,5	1-	250		250		250		
		0		RB12	13,5	12,5		700		800		800	VL10/0,75	
10	12		X 502	11012	13,3	12,5	_	250		250		250	or	
10			12 -		15,5	14,5	VS14	700		1000		1000	VL16/1,8	
12	1	4	-	RB14	15,5	14,5	V314	250		250		250		
12		16		RB16	17,5	16,5	VS16					1200		
14		18		RB18	20,0	18,5	VS18	700	VL10/0,75	1300		1400		
16		20		RB20	22,0	20,5	VS20		or			1600		
20	2	5		RB25	27,0	25,5	VS25		VL16/1,8		VL10/0,75			
20	1/-	-	26	RB26	28,0	26,5	VS25				or VL16/1,8			
22		28		RB28	30,0	28,5	VS28				VL10/1,0			
04/05		30		RB30	32,0	30,5	VS30	500					VL16/1,8	
24/25		32		RB32	34,0	32,5	VS32			1000		0000		
28	35			RB35	37,0	35,5	VS35			1000		2000		
32/34		40		RB40	43,5	40,5	VS40							
36		45		RB45	47,0	45,5	VS45]				
40	-	52	52	RB52	54,0	52,5	VS52	-	-					
40	55	-	55	RB55		55,5	VS55							

Table B4: Brushes, piston plugs, max anchorage depth and mixer extension, hammer drilling with hollow drill bit system (HDB)

	Drill		d _{b,min}			Cartridge: 440) ml or 58	35 ml	Cartri	dge : 1400 ml		
Bar size	bit - Ø	d _b	a _b min.		d _b min. Brush - Ø Brush -		b	Hand or attery tool	Pne	eumatic tool	Pneumatic tool	
ф	HDB	Biusii - Ø	Ø	plug	I _{v,max}	Mixer extension	I _{v,max}	Mixer extension	$I_{v,max}$	Mixer extension		
[mm]	[mm]				[mm]		[mm]		[mm]			
8	10			-	250		250		250			
	12			_	700		800		800			
10	12				250		250		250			
10	14						700		1000		1000	
12	14				250		250		250			
12	16	No alas		VS16						\/\ 40\/0.75		
14	18	No clea Requ		VS18	700	VL10/0,75 oder		VL10/0,75 oder		VL10/0,75 oder		
16	20	nequ	iieu	VS20		VL16/1,8		VL16/1,8		VL16/1,8		
20	25			VS25						VE10/1,0		
22	28			VS28			1000		1000			
24/25	30			VS30	500							
24/25	32			VS32	500							
28	35			VS35								
32/34	40			VS40								

CELO Injection system ResiFIX Pure Epoxy for rebar connection	

Intended UseParameter brushes, piston plugs, max anchorage depth and mixer extension

Annex B 4

Cleaning and installation tools

HDB - Hollow drill bit system

The hollow drill system consists of Heller Duster Expert hollow drill bit and a class M hoover with a minimum negative pressure of 253 hPa and a flow rate of minimum 150 m³/h (42 l/s).

Hand pump

(Volume 750 ml, $h_0 \ge 10 d_s$, $d_0 \le 20$ mm)

Manual slide valve

(min 6 bar)

Brush RB

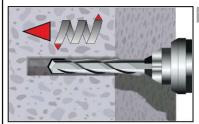
Pistole Plug VS

Brush extension RBL

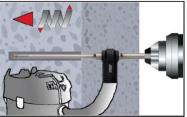
Table B5: Working time and curing time

Tempera	ature in base	e material	Maximum working time	Minimum curing time ¹⁾		
	T		t _{work}	t _{cure}		
+ 5°C	up to	+ 9°C	80 min	60 h		
+ 10°C	up to	+ 14 °C	60 min	48 h		
+ 15°C	up to	+ 19°C	40 min	24 h		
+ 20 °C	up to	+ 24 °C	30 min	12 h		
+ 25 °C	up to	+ 34 °C	12 min	10 h		
+ 35 °C	up to	+ 39 °C	8 min	7 h		
	+40°C		8 min	4 h		
Carl	tridge temper	ature	+5°C up to +40°C			

¹⁾ The minimum curing time is only valid for dry base material. In wet base material the curing time must be doubled.


CELO Injection system ResiFIX Pure Epoxy for rebar connection	
Intended Use Cleaning and installation tools Working time and curing time	Annex B 5

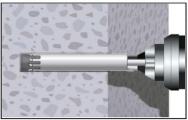
Installation instructions


Attention: Before drilling, remove carbonated concrete and clean contact areas (see Annex B1) In case of aborted drill hole: the drill hole shall be filled with mortar.

Drilling of the bore hole

Hammer drilling (HD) / Compressed air drilling (CD)

Drill a hole to the required embedment depth. Drill bit diameter according to Table B3. Proceed with Step 2 (MAC or CAC).


Hollow drill bit system (HDB) (see Annex B 5)

Drill a hole to the required embedment depth.

Drill bit diameter according to B4.

The hollow drilling system removes the dust and cleans the bore hole.

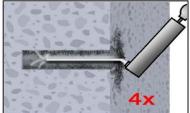
Proceed with Step 3.

Diamond drilling (DD)

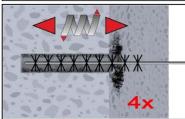
Drill a hole to the required embedment depth required Drill bit diameter according to Table B3.

Aborted drill holes shall be filled with mortar.

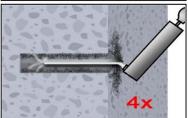
Proceed with Step 2 (SPCAC).


CELO Injection system ResiFIX Pure Epoxy for rebar connection	
Intended use Installation instruction	Annex B 6

Installation instructions (continuation)

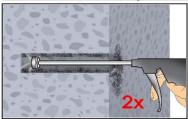

Manual Air Cleaning (MAC)

for drill hole diameter $d_0 \le 20$ mm and drill hole depth $h_0 \le 10\phi$, with drilling method HD/CD

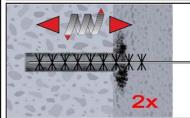


Attention! Standing water in the bore hole must be removed before cleaning.

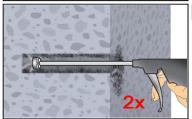
Blow the bore hole clean minimum 4x from the bottom or back by hand pump (Annex B 5).


Brush the bore hole minimum 4x with brush RB according to Table B3 over the entire embedment depth in a twisting motion (if necessary, use a brush extension).

Finally blow the bore hole clean minimum 4x from the bottom or back by hand pump (Annex B 5).


Compressed Air Cleaning (CAC):

All diameter with drilling method HD/CD



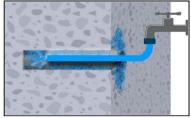
Attention! Standing water in the bore hole must be removed before cleaning.

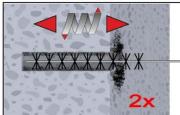
Blow the bore hole clean minimum 2x with compressed air (min. 6 bar) (Annex B 5) over the entire embedment depth until return air stream is free of noticeable dust. (If necessary, an extension shall be used.)

Brush the bore hole minimum 2x with brush RB according to Table B3 over the entire embedment depth in a twisting motion. (If necessary, a brush extension shall be used.)

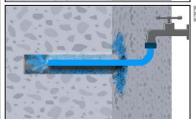
Finally blow the bore hole clean minimum 2x with compressed air (min. 6 bar) (Annex B 5) over the entire embedment depth until return air stream is free of noticeable dust. (If necessary, an extension shall be used.)

Protect cleaned bore hole against re-contamination in an appropriate way. If necessary, repeat cleaning process directly before dispensing the mortar. In-flowing water must not contaminate the bore hole again.

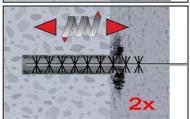

CELO Injection system ResiFIX Pure Epoxy for rebar connection	
Intended use Installation instructions (continuation)	Annex B 7

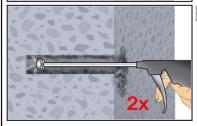

Installation instructions (continuation)

Flush & Compressed Air Cleaning (SPCAC):


All diameter with drilling method DD

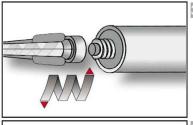
2a. Flushing with water until clear water comes out.


2b. Brush the bore hole minimum 2x with brush RB according to Table B4 over the entire embedment depth in a twisting motion. (If necessary, a brush extension shall be used.)


Flushing again with water until clear water comes out.

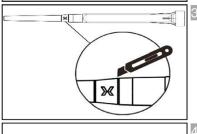
2d. Blow the bore hole clean minimum 2x with compressed air (min. 6 bar) (Annex B 4) over the entire embedment depth until return air stream is free of noticeable dust. (If necessary, an extension shall be used.)

2e. Brush the bore hole minimum 2x with brush RB according to Table B4 over the entire embedment depth in a twisting motion. (If necessary, a brush extension shall be used.)



Finally blow the bore hole clean minimum 2x with compressed air (min. 6 bar) (Annex B 4) over the entire embedment depth until return air stream is free of noticeable dust. (If necessary, an extension shall be used.)

Protect cleaned bore hole against re-contamination in an appropriate way. If necessary, repeat cleaning process directly before dispensing the mortar. In-flowing water must not contaminate the bore hole again.

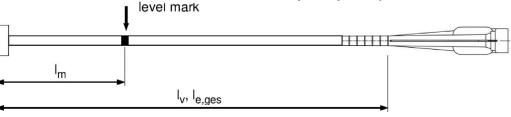

CELO Injection system ResiFIX Pure Epoxy for rebar connection	
Intended use Installation instructions (continuation)	Annex B 8

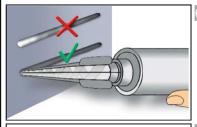
Installation instructions (continuation)

Screw on static-mixing nozzle MDE, and load the cartridge into an appropriate dispensing tool.

For every working interruption longer than the maximum working time t_{work} (Annex B 5) as well as for new cartridges, a new static-mixer shall be used.

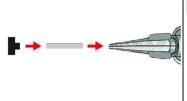
In case of using the mixer extension VL16/1,8, cut off the tip of the mixer nozzle at position $_{\mbox{\tiny "}}X$ ".


Mark embedment depth on the reinforcing bar .


The reinforcing bar shall be free of dirt, grease, oil or other foreign material.

Mark mixer nozzle and extension with mortar level mark I_m and anchorage depth I_v resp. I_{e,ges}

Quick estimation: $I_m = 1/3 \cdot I_v$ Optimum mortar volume:


$$I_{m} = I_{v} \text{ resp. } I_{e,ges} \cdot \left(1,2 \cdot \frac{\phi^{2}}{d_{0}^{2}} - 0,2\right)$$

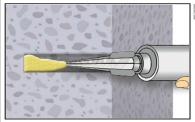
Not proper mixed mortar is not sufficient for fastening.

Dispense and discard mortar until an uniform grey or red colour is shown (at least 3 full strokes).

Piston plugs VS and mixer nozzle extensions VL shall be used according to Table B3.

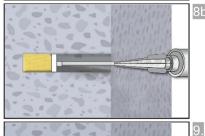
Assemble mixing nozzle, mixer extension and piston plug before injecting mortar.

CELO Injection system ResiFIX Pure Epoxy for rebar connection


Intended Use

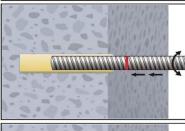
Installation instructions (continuation)

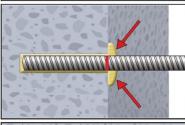
Annex B 9



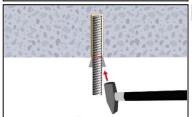
Installation instructions (continuation)

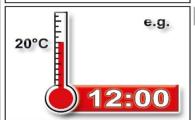
8a. Injecting mortar without piston plug VS:


Starting at bottom of the hole and fill the hole with adhesive until the mortar level mark is visible. (If necessary, a mixer nozzle extension shall be used.) Slowly withdraw of the static mixing nozzle avoid creating air pockets Observe the temperature related working time t_{work} (Annex B 5).


Injecting mortar with piston plug VS:

Insert piston plug to bottom of the hole and fill the hole with mortar until mortar level mark $l_{\rm m}$ is visible. (If necessary, a mixer nozzle extension shall be used.) During injection the piston plug is pushed out of the bore hole by the back pressure of the mortar.


Observe the temperature related working time t_{work} (Annex B 5).


Insert the reinforcing bar while turning slightly up to the embedment mark.

10. Annular gap between reinforcing bar and base material must be completely filled with mortar. Otherwise, the installation must be repeated starting from step 8 before the maximum working time t_{work} has expired.

11. For application in vertical upwards direction the reinforcing bar shall be fixed (e.g. wedges).

Installation instructions (continuation)

Temperature related curing time t_{cure} (Annex B 5) must be observed. Do not move or load the reinforcing bar during curing time.

Annex B 10

CELO Injection system ResiFIX Pure Epoxy for rebar connection Intended Use

Minimum anchorage length and minimum lap length under static or quasi-static loading

The minimum anchorage length $l_{b,min}$ and the minimum lap length $l_{0,min}$ according to EN 1992-1-1:2004+AC:2010 ($l_{b,min}$ acc. to Eq. 8.6 and Eq. 8.7 and $l_{0,min}$ acc. to Eq. 8.11) shall be multiply by the amplification factor $\alpha_{lb} = \alpha_{lb}$, 100y according to Table C2.

Table C1: Amplification factor α_{lb} related to concrete class and drilling method

Concrete class	Drilling method	Bar size	Amplification factor $\alpha_{ m lb}$
C12/15 to C50/60	HD: Hammer drilling HDB: Hammer drilling with hollow drill bit CD: Compressed air drilling	8 mm to 40 mm	1,0
C12/15 to C50/60	DD: Diamond drilling	8 mm to 40 mm	1,5

Table C2: Reduction factor k_b

Rebar	Drilling method		Concrete class								
ф		C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60	
8 to 40 mm	HD HDB CD	1,0									
8 to 40 mm	DD	1,0				0,9	0,79	0,73	0,68	0,63	

Table C3: Design values of the ultimate bond stress f_{bd,PIR} in N/mm² for all drilling methods and for good conditions

 $f_{bd,PIR} = k_b \cdot f_{bd}$ with

 f_{bd} : Design value of the ultimate bond stress in N/mm² considering the concrete classes, the rebar diameter, the drilling method for good bond condition (for all other bond conditions multiply the values by η_1 =0.7) and recommended partial factor γ_c = 1,5 according to EN 1992-1-1:2004+AC:2010.

k_b: Reduction factor according to Table C2

Rebar	Drilling	Concrete class									
ф	method	C12/15	C16/20	C20/25	C25/30	C30/37	C35/45	C40/50	C45/55	C50/60	
8 to 32 mm		1,6	2,0	2,3	2,7	3,0	3,4	3,7	4,0	4,3	
34 mm	HD	1,6	2,0	2,3	2,6	2,9	3,3	3,6	3,9	4,2	
36 mm	HDB CD	1,5	1,9	2,2	2,6	2,9	3,3	3,6	3,8	4,1	
40 mm		1,5	1,8	2,1	2,5	2,8	3,1	3,4	3,7	4,0	
8 to 32 mm		1,6	2,0	2,3			2	,7			
34 mm	DD	1,6	2,0	2,3	2,6						
36 mm	טט	1,5	1,9	2,2	2,6						
40 mm		1,5	1,8	2,1			2	,5			

CELO Injection system ResiFIX Pure Epoxy for rebar connection	
Performances Minimum anchorage length and minimum lap length, Amplification factor, Reduction factor and Design values of ultimate bond resistance	Annex C 1

Design value of the ultimate bond stress $f_{bd,fi}$ at increased temperature for concrete classes C12/15 to C50/60, (all drilling methods):

The design value of the bond stress f_{bd.fi} at increased temperature has to be calculated by the following equation:

$$f_{bd.fi} = k_{fi}(\theta) \cdot f_{bd.PIR} \cdot \gamma_{c} / \gamma_{M.fi}$$

with: $\theta \le 140^{\circ}\text{C}$: $k_{fi}(\theta) = 5862 \cdot \theta^{-1,657} / (f_{bd,PIR} \cdot 4,3) \le 1,0$

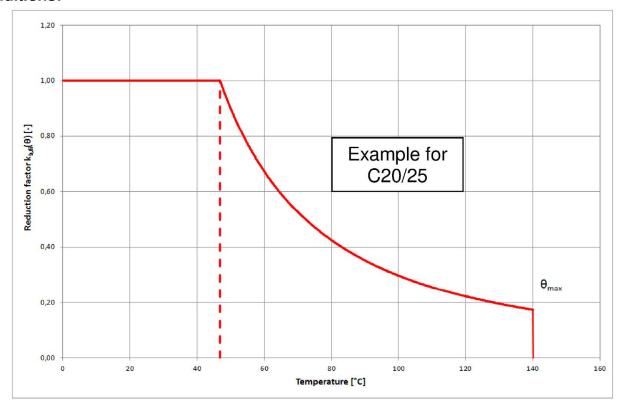
 $\theta > 140^{\circ}\text{C}$: $k_{fi}(\theta) = 0$

 $f_{bd,fi}$ Design value of the ultimate bond stress at increased temperature in N/mm²

θ Temperature in °C in the mortar layer.

 $k_{fi}(\theta)$ Reduction factor at increased temperature.

f_{bd.PIR} Design value of the bond stress in N/mm² in cold condition according to Table C3


considering the concrete classes, the rebar diameter, the drilling method and the bond conditions

according to EN 1992-1-1:2004+AC:2010.

 $\gamma_{\rm C}$ = 1,5, recommended partial factor according to EN 1992-1-1:2004+AC:2010 $\gamma_{\rm M,fi}$ = 1,0, recommended partial factor according to EN 1992-1-2:2004+AC:2008

For evidence at increased temperature the anchorage length shall be calculated according to EN 1992-1-1:2004+AC:2010 Equation 8.3 using the temperature-dependent design value of ultimate bond stress $f_{bd\ fi}$.

Example graph of Reduction factor $k_{fi}(\theta)$ for concrete classes C20/25 for good bond conditions:

CELO Injection system ResiFIX Pure Epoxy for rebar connection	
Performances Design value of ultimate bond stress at increased temperature	Annex C 2