

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-22/0246 of 3 June 2022

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

CELO Injection system ResiFIX Pure Epoxy for concrete

Bonded fastener for use in concrete

CELO Befestigungssysteme GmbH Industriestraße 6 86551 Aichach DEUTSCHLAND

Werk2, Deutschland

24 pages including 3 annexes which form an integral part of this assessment

EAD 330499-01-0601, Edition 04/2020

European Technical Assessment ETA-22/0246 English translation prepared by DIBt

Page 2 of 24 | 3 June 2022

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z38383.22 8.06.01-57/22

European Technical Assessment ETA-22/0246

Page 3 of 24 | 3 June 2022

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The "CELO Injection system ResiFIX Pure Epoxy for concrete" is a bonded anchor consisting of a cartridge with injection Pure Epoxy EPSF and a steel element. The steel element consists of a commercial threaded rod with washer and hexagon nut in the range of M8 to M30 or reinforcing bar in the range of \emptyset 8 to \emptyset 32 mm.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex B 2, C 1, C 2, C 3 and C 5
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C 1, C 4 and C 6
Displacements under short-term and long-term loading	See Annex C 7 and C 8
Characteristic resistance and displacements for seismic performance categories C1 and C2	No performance assessed

3.2 Hygiene, health and the environment (BWR 3)

Essential characteristic	Performance			
Content, emission and/or release of dangerous substances	No performance assessed			

Z38383.22 8.06.01-57/22

European Technical Assessment ETA-22/0246

Page 4 of 24 | 3 June 2022

English translation prepared by DIBt

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

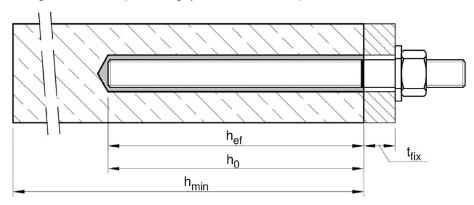
In accordance with the European Assessment Document EAD 330499-01-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

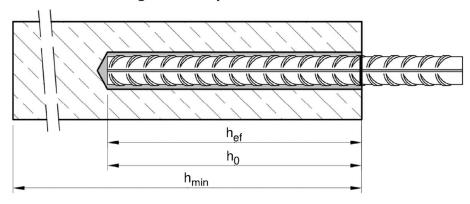
5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin 3 June 2022 by Deutsches Institut für Bautechnik


Beatrix Wittstock beglaubigt:
Head of Section Baderschneider

Z38383.22 8.06.01-57/22



Installation threaded rod M8 up to M30

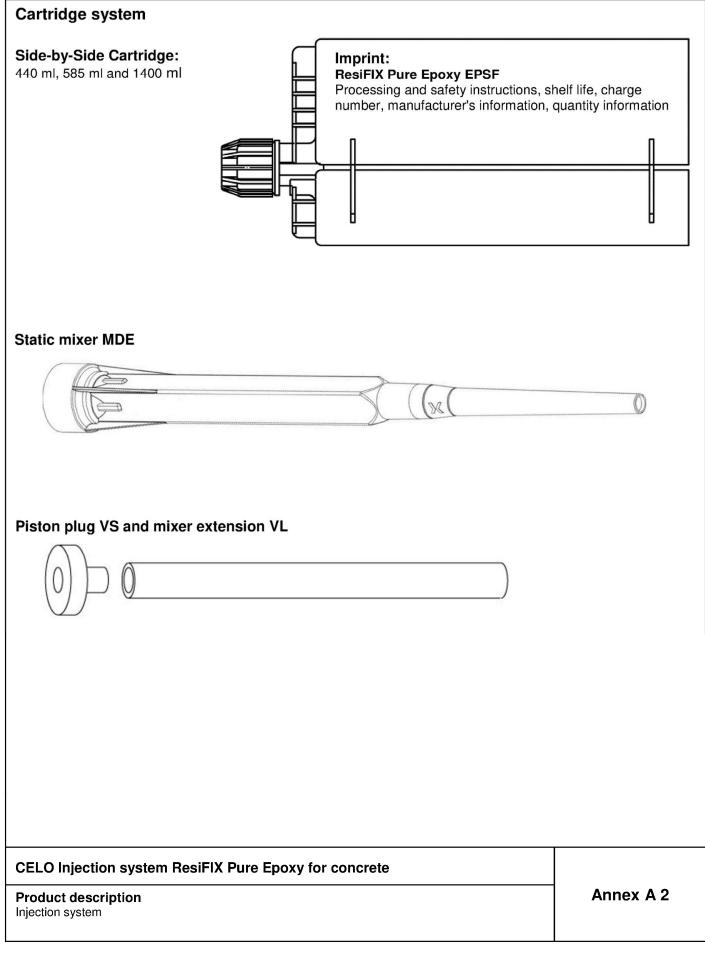
prepositioned installation or push through installation (annular gap filled with mortar)

Installation reinforcing bar Ø8 up to Ø32

 t_{fix} = thickness of fixture

 h_0

nominal drill hole diameter


 h_{ef} = effective anchorage depth h_{min} = minum thickness of member

CELO Injection system ResiFIX Pure Epox	/ for concrete

Product description Installed condition

Annex A 1

Threaded rod M8 up to M30 with washer and hexagon nut

Mark of the embedment depth

L_{ges}

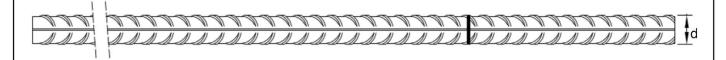
h_{ef}

1 3a 2

Commercial standard rod with:

- Materials, dimensions and mechanical properties acc. to Table A1
- Inspection certificate 3.1 acc. to EN 10204:2004. The document shall be stored.
- Marking of embedment depth

CELO Injection system ResiFIX Pure Epoxy for concrete	
Product description Threaded rod	Annex A 3


Table A1: Materials											
Part	Designation	Material									
		acc. to EN ISO 683-4:2	2018	or EN 10263:2001)							
- zi	- zinc plated ≥ 5 μm acc. to EN ISO 4042:2018 or										
- hot-dip galvanised ≥ 40 μm acc. to EN ISO 1461:2009 and EN ISO 10684:2004+AC:2009 or											
- sh	- sherardized ≥ 45 μm acc. to EN ISO 17668:2016										
	Property class Characteristic steel Characteristic steel Ultimate tensile strength Characteristic steel yield strength fracture										
			4.6	f _{uk} = 400 N/mm ²	f _{vk} = 240 N/mm ²	A ₅ > 8%					
1	Threaded rod		4.8	f _{uk} = 400 N/mm ²	f _{yk} = 320 N/mm ²	A ₅ > 8%					
		acc. to EN ISO 898-1:2013	5.6	f _{uk} = 500 N/mm ²	f _{yk} = 300 N/mm ²	A ₅ > 8%					
		LN 130 030-1.2013	5.8	f _{uk} = 500 N/mm ²	f _{yk} = 400 N/mm ²	A ₅ > 8%					
			8.8	f _{uk} = 800 N/mm ²	f _{yk} = 640 N/mm ²	A ₅ > 8%					
		ann to	4	for anchor rod class 4.6 o	r 4.8						
2	Hexagon nut	acc. to		for anchor rod class 5.6 or 5.8							
		NO 100 10 10 10	8	for anchor rod class 8.8							
3	Washer			alvanised or sherardized ISO 7089:2000, EN ISO 7	093:2000 or EN ISO 709	94:2000)					
Stair	nless steel A2 (Mat	terial 1.4301 / 1.4307 / 1	.4311	1 / 1.4567 or 1.4541, acc. t	o EN 10088-1:2014)	,					
				/ 1.4362 or 1.4578, acc. to							
High	corrosion resista	nce steel (Material 1.45	29 or	1.4565, acc. to EN 10088							
		Property class		Characteristic steel ultimate tensile strength	Characteristic steel yield strength	Elongation at fracture					
1	Threaded rod ¹⁾²⁾		50	f _{uk} = 500 N/mm ²	f _{yk} = 210 N/mm ²	A ₅ ≥ 8%					
		acc. to EN ISO 3506-1:2020	70	f _{uk} = 700 N/mm ²	f _{yk} = 450 N/mm ²	A ₅ > 8%					
		214 100 0000 1.2020	80	f _{uk} = 800 N/mm ²	$f_{yk} = 600 \text{ N/mm}^2$	A ₅ > 8%					
		acc. to	50	for anchor rod class 50							
2	Hexagon nut 1)2)	EN ISO 3506-1:2020	70	for anchor rod class 70							
		Company of the Compan	80	for anchor rod class 80		7 XXXXII B					
3	A2: Material 1.4301 / 1.4307 / 1.4311 / 1.4567 or 1.4541, acc. to EN 10088-1:2014										

¹⁾ Property class 70 or 80 for anchor rods and hexagon nuts up to M24 2) Property class 80 only for stainless steel A4 and HCR

CELO Injection system ResiFIX Pure Epoxy for concrete	
Product description Materials threaded rod	Annex A 4

Reinforcing bar (rebar): ø8 up to ø32

- Minimum value of related rib area f_{R,min} according to EN 1992-1-1:2004+AC:2010
- Rib height of the bar shall be in the range 0,05d ≤ h_{rib} ≤ 0,07d
 (d: Nominal diameter of the bar; h_{rib}: Rib height of the bar)

Table A2: Materials Rebar

Part	Designation	Material
Reba	ar	
1	Reinforcing steel according to EN 1992 1 1:2004+AC:2010, Annex C	Bars and rebars from ring class B or C f_{yk} und k according to NDP or NCI according to EN 1992-1-1/NA $f_{uk} = f_{tk} = k \cdot f_{yk}$

CELO Injection system ResiFIX Pure Epoxy for concrete	
Product description Reinforcing bar Materials reinforcing bar	Annex A 5

Specification of the intended use

Fasteners subject to (Static and quasi-static loads):

	Working life 50 years							
Base material	Uncracked concrete Base material							
HD: Hammer drilling HDB: Hammer drilling with hollow drill bit CD: Compressed air drilling	M8 bis M30, ∅8 bis ∅32							
DD: Diamond drilling	No performance assessed							
Temperature Range:	I: - 40°C to +40°C ¹⁾ II: - 40°C to +60°C ²⁾ III: - 40°C to +70°C ³⁾							

^{1) (}max. long-term temperature +24°C and max. short-term temperature +40°C)

Base materials:

- Compacted, reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013 + A1:2016.
- Strength classes C20/25 to C50/60 according to EN 206:2013 + A1:2016.

Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (all materials).
- For all other conditions according to EN 1993-1-4:2006+A1:2015 corresponding to corrosion resistance class:
 - Stainless steel Stahl A2 according to Annex A 4, Table A1: CRC II
 - Stainless steel Stahl A4 according to Annex A 4, Table A1: CRC III
 - High corrosion resistance steel HCR according to Annex A 4, Table A1: CRC V

Design:

- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the fastener is indicated on the design drawings (e. g. position of the fastener relative to reinforcement or to supports, etc.).
- Fasteners are designed under the responsibility of an engineer experienced in fasteners and concrete work.
- The fasteners are designed in accordance to EN 1992-4:2018 and Technical Report TR 055, Edition February 2018

Installation:

- Dry, wet concrete or flooded bore holes (not sea-water).
- Hole drilling by hammer (HD), hollow (HDB) or compressed air mode(CD).
- Overhead installation allowed.
- Fastener installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site

CELO Injection system ResiFIX Pure Epoxy for concrete	
Intended Use Specifications	Annex B 1

^{2) (}max. long-term temperature +35°C and max. short-term temperature +60°C)

^{3) (}max. long-term temperature +35°C and max. short-term temperature +70°C)

Table B1: Installation parameters for threaded rod										
			M8	M10	M12	M16	M20	M24	M27	M30
į	$d = d_{nom}$	[mm]	8	10	12	16	20	24	27	30
ameter	d ₀	[mm]	10	12	14	18	22	28	30	35
Effective embedment depth		[mm]	60	60	70	80	90	96	108	120
п аерт		5.5 G-15.	160	200	240	320	400	480	540	600
Prepositioned ins		[mm]	9	12	14	18	22	26	30	33
Push through in	nstallation d _f	[mm]	12	14	16	20	24	30	33	40
n torque	max T _{inst} ≤	[Nm]	10	20	40 ¹⁾	60	100	170	250	300
Minimum thickness of member		[mm]					ı	h _{ef} + 2d ₀		
Minimum spacing s _{min}		[mm]	40	50	60	75	95	115	125	140
nce	c _{min}	[mm]	35	40	45	50	60	65	75	80
	ameter It depth Prepositioned ins Push through intorque of member	$ d = d_{nom} $ $ ameter $	$d = d_{nom} [mm]$ $d_0 [mm]$ $d_0 [mm]$ $d_0 [mm]$ $d_{ef,min} [mm]$ $d_{ef,max} [mm]$ $d_0 [mm]$ $d_0 [mm]$ $d_0 [mm]$ $d_0 [mm]$ $d_0 [mm]$ $d_1 [mm]$ $d_1 [mm]$ $d_1 [mm]$ $d_1 [mm]$ $d_2 [mm]$ $d_3 [mm]$ $d_4 [mm]$ $d_4 [mm]$ $d_5 [mm]$ $d_6 [mm]$ $d_7 [mm]$ $d_8 [mm]$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						

¹⁾ Maximum installation torque for M12 with steel Grade 4.6 is 35 Nm

Table B2: Installation parameters for reinforcing bar

l .												
Reinforcing bar			Ø 81)	Ø 10 ¹⁾	Ø 12 ¹⁾	Ø 14	Ø 16	Ø 20	Ø 24 ¹⁾	Ø 25 ¹⁾	Ø 28	Ø 32
Diameter of element	$d = d_{nom}$	[mm]	8	10	12	14	16	20	24	25	28	32
Nominal drill hole diameter	d_0	[mm]	10 12	12 14	14 16	18	20	25	30 32	30 32	35	40
Effective embedment depth	h _{ef,min}	[mm]	60	60	70	75	80	90	96	100	112	128
	h _{ef,max}	[mm]	160	200	240	280	320	400	480	500	560	640
Minimum thickness of member	h _{min}	[mm]	h _{ef} + 30 mm ≥ 100 mm					h _e	_f + 2d ₀			
Minimum spacing	s _{min}	[mm]	40	50	60	70	75	95	120	120	130	150
Minimum edge distance	c _{min}	[mm]	35	40	45	50	50	60	70	70	75	85

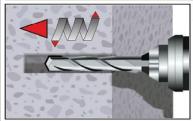
¹⁾ both nominal drill hole diameter can be used

CELO Injection system ResiFIX Pure Epoxy for concrete	
Intended Use Installation parameters	Annex B 2

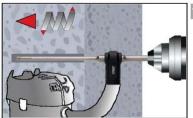
Threaded rod	Reinforcing bar	d ₀ Drill bit - Ø HD, HDB, CD	d Brus		d _{b,min} min. Brush - Ø	Piston plug		on direction and us piston plug	
[mm]	[mm]	[mm]		[mm]	[mm]		1	\rightarrow	1
M8	8	10	RB10	11,5	10,5				
M10	8 / 10	12	RB12	13,5	12,5	1	Maria		
M12	10 / 12	14	RB14	15,5	14,5	1	No plug	required	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	12	16	RB16	17,5	16,5	1			
M16	14	18	RB18	20,0	18,5	VS18			
	16	20	RB20	22,0	20,5	VS20	1		
M20	2.0	22	RB22	24,0	22,5	VS22	1		
	20	25	RB25	27,0	25,5	VS25	- h.>		
M24		28	RB28	30,0	28,5	VS28	h _{ef} >	h _{ef} >	all
M27		30	RB30	31,8	30,5	VS30	250 mm	250 mm	
	24 / 25	32	RB32	34,0	32,5	VS32	1		
M30	28	35	RB35	37,0	35,5	VS35			
IVIOU				,-					
	32	40	RB40	43,5	40,5	VS40	1		
Cleaning IDB – Holl	and installation drill bit sy	40 ation tools stem		43,5	The hol Expert I minimu rate of i	low drill sy Hohlbohrei m negative minimum 1 essed air	r and a class pressure of 50 m³/h (42	ts of Heller D M hoover w 253 hPa and	ith a
Cleaning IDB – Holl	and installation drill bit sy	40 ation tools stem		43,5	The hole Expert I minimular rate of a Compression (min 6 to 1).	low drill sy Hohlbohren m negative minimum 1 essed air par)	r and a class pressure of 50 m³/h (42	M hoover w 253 hPa an	ith a
Cleaning HDB – Holl Hand pum Volumen 7	and installation drill bit sy	40 ation tools stem		43,5	The hole Expert I minimular rate of a Compression (min 6 to 1).	low drill sy Hohlbohrei m negative minimum 1 essed air	r and a class pressure of 50 m³/h (42	M hoover w 253 hPa an	ith a
Cleaning HDB - Holl Hand pump Volumen 7 Brush RB	and installation drill bit sy	ation tools stem d _s , d ₀ ≤ 20mm	CHACATA	9	The hole Expert I minimular rate of the Compression (min 6 to Pistole	low drill sy Hohlbohren m negative minimum 1 essed air par)	r and a class e pressure of 50 m³/h (42 tool	M hoover w 253 hPa an	ith a

Table B4:	Working and	curing time
-----------	-------------	-------------

Temperature in base material			Maximum working time	Minimum curing time 1)		
	Т		t _{work}	t _{cure}		
+ 5°C	to	+ 9 °C	80 min	60 h		
+ 10°C	+ 10 °C to + 14 °C		60 min	48 h		
+ 15°C	to	+ 19°C	40 min	24 h		
+ 20 °C	to	+ 24 °C	30 min	12 h		
+ 25 °C	to	+ 34 °C	12 min	10 h		
+ 35 °C	to	+ 39 °C	8 min	7 h		
	+ 40 °C		8 min	4 h		
Cart	tridge tempe	erature	ure +5°C to +40°C			


¹⁾ The minimum curing time is only valid for dry base material. In wet base material the curing time must be doubled.

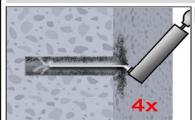
CELO Injection system ResiFIX Pure Epoxy for concrete	
Intended Use Working time and curing time	Annex B 4



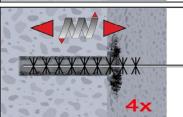
Installation instructions

Drilling of the bore hole

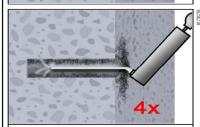
1a. Hammer drilling (HD) / Compressed air drilling (CD) Drill a hole for the required embedment depth Drill bit diameter according to Table B1 or B2. Proceed with Step 2. In case of aborted drill hole, the drill hole shall be filled with mortar.


Hammer drilling with Hollow drill bit (HDB) (see Annex B 4)
Drill a hole for the required embedment depth Drill bit diameter according to
Table B1 or B2. The hollow drill bit system removes the dust and cleans the
bore hole during drilling (all conditions).
Proceed with Step 3.

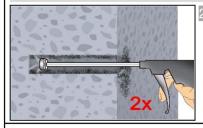
In case of aborted drill hole, the drill hole shall be filled with mortar.


Attention! Standing water in the bore hole must be removed before cleaning.

Manual Air Cleaning (MAC)


for drill hole diameter $d_0 \le 20$ mm and drill hole depth $h_0 \le 10d_{nom}$ (uncracked concrete only!)

Blow the bore hole clean minimum 4x from the bottom or back by hand pump (Annex B 4).


Brush the bore hole minimum 4x with brush RB according to Table B3 over the entire embedment depth in a twisting motion (if necessary, use a brush extension RBL).

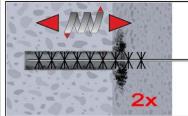
Finally blow the bore hole clean minimum 4x from the bottom or back by hand pump (Annex B 4).

Compressed Air Cleaning (CAC):

All diameter in cracked and uncracked concrete

Blow the bore hole clean minimum of 2x with compressed air (min. 6 bar) (Annex B 4) over the entire embedment depth until return air stream is free of noticeable dust. (If necessary, an extension shall be used.)

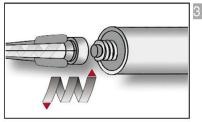
CELO Injection system ResiFIX Pure Epoxy for concrete


Intended Use

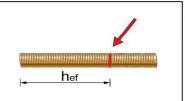
Installation instructions

Annex B 5

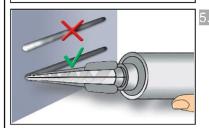
Installation instructions (continuation)



2b. Brush the bore hole minimum 2x with brush RB according to Table B3 over the entire embedment depth in a twisting motion. (If necessary, a brush extension RBL shall be used.)


Finally blow the bore hole clean minimum 2x with compressed air (min. 6 bar) (Annex B 4) over the entire embedment depth until return air stream is free of noticeable dust. (If necessary, an extension shall be used.)

Cleaned bore hole has to be protected against re-contamination in an appropriate way, If necessary, repeat cleaning process directly before dispensing the mortar. In-flowing water must not contaminate the bore hole again.


Screw on static-mixing nozzle MDE, and load the cartridge into an appropriate dispensing tool.

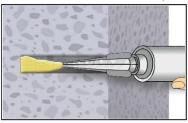
For every working interruption longer than the maximum working time t_{work} (Annex B 4) as well as for new cartridges, a new static-mixer shall be used.

Mark embedment depth on the anchor rod.

The anchor rod shall be free of dirt, grease, oil or other foreign material.

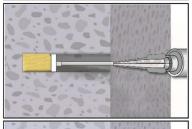
Not proper mixed mortar is not sufficient for fastening. Dispense and discard mortar until an uniform grey or red colour is shown (at least 3 full strokes).

Piston plugs VS and mixer nozzle extensions VL shall be used according to Table B4 for the following applications:


- Horizontal and vertical downwards direction: Drill bit-Ø d₀ ≥ 18 mm and embedment depth h_{ef} > 250mm
- Vertical upwards direction: Drill bit-Ø d₀ ≥ 18 mm

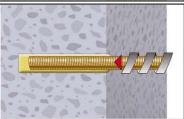
Assemble mixing nozzle, mixer extension and piston plug before injecting mortar.

CELO Injection system ResiFIX Pure Epoxy for concrete Intended Use Installation instructions (continuation) Annex B 6



Installation instructions (continuation)

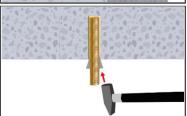
7a. Injecting mortar without piston plug VS


Starting at bottom of the hole and fill the hole up to approximately two-thirds with adhesive. (If necessary, a mixer nozzle extension shall be used.) Slowly withdraw of the static mixing nozzle avoid creating air pockets Observe the temperature related working time t_{work} (Annex B 4).

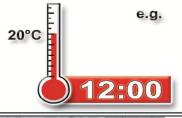
Injecting mortar with piston plug VS

Starting at bottom of the hole and fill the hole up to approximately two-thirds with adhesive. (If necessary, a mixer nozzle extension shall be used.) During injection the piston plug is pushed out of the bore hole by the back pressure of the mortar.

Observe the temperature related working time t_{work} (Annex B 4).



Insert the anchor rod while turning slightly up to the embedment mark.



Annular gap between anchor rod and base material must be completely filled with mortar. In case of push through installation the annular gap in the fixture must be filled with mortar also.

Otherwise, the installation must be repeated starting from step 7 before the maximum working time t_{work} has expired.

For application in vertical upwards direction the anchor rod shall be fixed (e.g. wedges).

Temperature related curing time t_{cure} (Annex B 4) must be observed. Do not move or load the fastener during curing time.

Install the fixture by using a calibrated torque wrench. Observe maximum installation torque (Table B1).

CELO Injection system ResiFIX Pure Epoxy for concrete

Intended Use

Installation instructions (continuation)

Annex B 7

T	able C1: Characteristic values of threaded rods	for ste	el ter	nsion r	esista	nce ai	nd ste	el sh	ear re	sistar	псе
Th	readed rod			M8	M10	M12	M16	M20	M24	M27	M30
Cr	oss section area	A _s	[mm²]	36,6	58	84,3	157	245	353	459	561
Cł	naracteristic tension resistance, Steel failu	re ¹⁾									
	eel, Property class 4.6 and 4.8	N _{Rk,s}	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
St	eel, Property class 5.6 and 5.8	N _{Rk,s}	[kN]	18 (17)	29 (27)	42	78	122	176	230	280
St	eel, Property class 8.8	N _{Rk,s}	[kN]	29 (27)	46 (43)	67	125	196	282	368	449
St	ainless steel A2, A4 and HCR, class 50	N _{Rk,s}	[kN]	18	29	42	79	123	177	230	281
St	ainless steel A2, A4 and HCR, class 70	N _{Rk,s}	[kN]	26	41	59	110	171	247	_3)	_3)
St	ainless steel A4 and HCR, class 80	N _{Rk,s}	[kN]	29	46	67	126	196	282	_3)	_3)
Cr	naracteristic tension resistance, Partial fac	tor ²⁾									
St	eel, Property class 4.6 and 5.6	γ _{Ms,N}	[-]				2,0)			
St	eel, Property class 4.8, 5.8 and 8.8	γ _{Ms,N}	[-]				1,5	5			
Sta	ainless steel A2, A4 and HCR, class 50	γ _{Ms,N}	[-]				2,8	6			
Sta	ainless steel A2, A4 and HCR, class 70	γ _{Ms,N}	[-]				1,8	7			
St	ainless steel A4 and HCR, class 80	γ _{Ms,N}	[-]				1,6	3			
Cł	aracteristic shear resistance, Steel failure	1)									
_	Steel, Property class 4.6 and 4.8	V ⁰ _{Rk,s}	[kN]	9 (8)	14 (13)	20	38	59	85	110	135
arm	Steel, Property class 5.6 and 5.8	V ⁰ Rk,s	[kN]	11 (10)	17 (16)	25	47	74	106	138	168
ever	Steel, Property class 8.8	V ⁰ Rk,s	[kN]	15 (13)	23 (21)	34	63	98	141	184	224
ont j	Stainless steel A2, A4 and HCR, class 50	V ⁰ Rk,s	[kN]	9	15	21	39	61	88	115	140
Without lever	Stainless steel A2, A4 and HCR, class 70	V ⁰ Rk,s	[kN]	13	20	30	55	86	124	_3)	_3)
>	Stainless steel A4 and HCR, class 80	V ⁰ Rk,s	[kN]	15	23	34	63	98	141	_3)	_3)
	Steel, Property class 4.6 and 4.8	M ⁰ Rk,s	[Nm]	15 (13)	30 (27)	52	133	260	449	666	900
arm	Steel, Property class 5.6 and 5.8	M ⁰ Rk,s	[Nm]	19 (16)	37 (33)	65	166	324	560	833	1123
ver 8	Steel, Property class 8.8	M ⁰ Rk,s	[Nm]	30 (26)	60 (53)	105	266	519	896	1333	1797
h lever	Stainless steel A2, A4 and HCR, class 50	M ⁰ Rk,s	[Nm]	19	37	66	167	325	561	832	1125
۷	Stainless steel A2, A4 and HCR, class 70	M ⁰ Rk,s	[Nm]	26	52	92	232	454	784	_3)	_3)
	Stainless steel A4 and HCR, class 80	M ⁰ Rk,s	[Nm]	30	59	105	266	519	896	_3)	_3)
Cr	naracteristic shear resistance, Partial facto										
St	eel, Property class 4.6 and 5.6	γ _{Ms,V}	[-]				1,6	7			
St	eel, Property class 4.8, 5.8 and 8.8	γ _{Ms,V}	[-]				1,2	:5			
Sta	ainless steel A2, A4 and HCR, class 50	γ _{Ms,V}	[-]				2,3	8			
Sta	ainless steel A2, A4 and HCR, class 70	γ _{Ms,V}	[-]				1,5	6			
St	ainless steel A4 and HCR, class 80	γ _{Ms,V}	[-]				1,3	3			

¹⁾ Values are only valid for the given stress area A_s. Values in brackets are valid for undersized threaded rods with smaller stress area A_s for hot-dip galvanised threaded rods according to EN ISO 10684:2004+AC:2009.

³⁾ Fastener type not part of the ETA

CELO Injection system ResiFIX Pure Epoxy for concrete	
Performances Characteristic values for steel tension resistance and steel shear resistance of threaded rods	Annex C 1

²⁾ In absence of national regulation

Table C2:	Characteristic va	lues of ten	sion loads	under static and quasi-static action
Fastener				All Fastener type and sizes
Concrete cone fa	ailure			
Uncracked concre	ete	k _{ucr,N}	[-]	11,0
Cracked concrete)	k _{cr,N}	[-]	7,7
Edge distance		c _{cr,N}	[mm]	1,5 h _{ef}
Axial distance		s _{cr,N}	[mm]	2 c _{cr,N}
Splitting				
	h/h _{ef} ≥ 2,0			1,0 h _{ef}
Edge distance	$2.0 > h/h_{ef} > 1.3$	C _{cr,sp}	[mm]	$2 \cdot h_{ef} \left(2,5 - \frac{h}{h_{ef}} \right)$
	h/h _{ef} ≤ 1,3			2,4 h _{ef}
Axial distance		s _{cr,sp}	[mm]	2 c _{cr,sp}

CELO Injection system ResiFIX Pure Epoxy for concrete	
Performances Characteristic values of tension loads under static and quasi-static action	Annex C 2

Thread	ded rod				М8	M10	M12	M16	M20	M24	M27	M30
Steel f	ailure											
Charac	teristic tension res	sistance	N _{Rk,s}	[kN]			$A_{s} \cdot f_{l}$	ık (or s	ee Tab	le C1)		
Partial factor $\gamma_{Ms,N}$ [-]								see Ta	ble C1			
Combi	ned pull-out and	concrete failure										
Charac	teristic bond resist	tance in uncracke	d concrete C	20/25								
ture	I: 40°C/24°C	Dry, wet			15	15	15	14	14	13	13	13
Temperature range	II: 60°C/35°C	concrete and flooded bore	^τ Rk,ucr	[N/mm²]	10	10	10	9,5	9,5	9,0	9,0	9,0
Ten	III: 70°C/43°C	hole			7,0	7,0	7,0	6,5	6,5	6,0	6,0	6,0
Charac	teristic bond resist	tance in cracked o	concrete C20	/25								
ture	I: 40°C/24°C	Dry, wet			7,0	7,0	7,0	7,0	7,0	6,0	6,0	6,0
Temperature range	II: 60°C/35°C	concrete and flooded bore		[N/mm²]	5,0	5,0	5,0	5,0	5,0	4,5	4,5	4,5
Ter	III: 70°C/43°C	hole		3,5	3,5	3,5	3,5	3,5	3,0	3,0	3,0	
Reduct	tion factor $\psi^0_{ extstyle $	cracked and unci	acked concr	ete C20/25								
	I: 40°C/24°C	Dry, wet			0,60							
Temperature range	II: 60°C/35°C	concrete and flooded bore	Ψ^0 sus	0 sus [-]	0,60							
Terr	III: 70°C/43°C	hole			0,60							
Increas	sing factors for con	crete	Ψ _c	[-]				(f _{ck} / 2	20) ^{0,1}			
Charac	teristic bond resist	tance depending		τ _{Rk,ucr} =			Ψс		_{cr} (C20/	25)		
	concrete strength			τ _{Rk,cr} =					r(C20/2			
Concr	ete cone failure		•									
Releva	nt parameter							see Ta	ıble C2			
Splittii	-											
	nt parameter							see Ta	ble C2			
	ation factor											
tor dry	and wet concrete	or flooded bore	γ _{inst}	[-]				- 1	,4			

CELO Injection system ResiFIX Pure Epoxy for concrete	
Performances Characteristic values of tension loads under static and quasi-static action (Threaded rod)	Annex C 3

Threaded rod				M10	M12	M16	M20	M24	M27	M30
Steel failure without lever arm										
Characteristic shear resistance Steel, strength class 4.6, 4.8 and 5.6, 5.8	V ⁰ Rk,s	[kN]			0,6 •	A _s ·f _{uk}	(or see	Table C	1)	
Characteristic shear resistance Steel, strength class 8.8 Stainless Steel A2, A4 and HCR, all strength classes	V ⁰ _{Rk,s}	[kN]	0,5 ⋅ A _s ⋅ f _{uk} (or see Table C1)							
Partial factor	γ _{Ms,V}	[-]				see	Table C	1		
Ductility factor	k ₇	[-]	1,0							
Steel failure with lever arm										
Characteristic bending moment	M ⁰ Rk,s	[Nm]			1,2 • \	N _{el} ·f _{uk}	(or see	Table C	1)	
Elastic section modulus	W _{el}	[mm³]	31	62	109	277	541	935	1387	1874
Partial factor	γ _{Ms,V}	[-]				see	Table C	1		
Concrete pry-out failure										
Factor	k ₈	[-]					2,0			
Installation factor	γ _{inst}	[-]					1,0			
Concrete edge failure										
Effective length of fastener	l _f	[mm]		m	in(h _{ef} ; 1	2 · d _{nor}	_n)		min(h _{ef} ;	300mm
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	16	20	24	27	30
Installation factor	γ _{inst}	[-]					1,0			

CELO Injection system ResiFIX Pure Epoxy for concrete	
Performances Characteristic values of shear loads under static and quasi-static action (Threaded rod)	Annex C 4

Table	e C5: Cha	racteristic v	alues of	tension	load	s un	der s	tatic	and	quas	si-sta	tic a	ction	
Reinfor	cing bar				Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Steel fa														
Charact	teristic tension r	esistance	N _{Rk,s}	[kN]					A_s .	$f_{uk}^{1)}$				
Cross s	ection area		As	[mm²]	50	79	113	154	201	314	452	491	616	804
Partial f	actor		γ _{Ms,N}	[-]					1,	42)				
		d concrete fail												
Charact	teristic bond res	istance in uncra	cked concre	te C20/25						1				
ature	I: 40°C/24°C	Dry, wet		[N/mm²]	14	14	14	12	12	12	12	11	11	11
Temperature range	II: 60°C/35°C	concrete and flooded bore	^τ Rk,ucr		9,5	9,5	9,5	8,5	8,5	8,5	7,5	7,5	7,5	7,5
Ter	III: 70°C/43°C	hole			6,0	6,0	6,0	6,0	6,0	5,5	5,5	5,5	5,0	5,0
Charact	teristic bond res	istance in crack	ed concrete	C20/25										
e atr	I: 40°C/24°C	Dry, wet concrete and flooded bore		[N/mm²]	6,0	7,0	7,0	6,5	6,5	6,0	6,0	6,0	5,5	5,5
	II: 60°C/35°C		^τ Rk,cr		4,0	4,5	4,5	4,5	4,0	4,0	4,0	4,0	3,5	3,5
Terr	III: 70°C/43°C	hole			2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5	2,5
Reducti	on factor ψ ⁰ sus	in cracked and	uncracked co	oncrete C2	20/25									
ure	I: 40°C/24°C	Dry, wet		[-]	0,60									
Temperature range	II: 60°C/35°C	concrete and flooded bore	Ψ^0 sus		0,60									
Tem	III: 70°C/43°C	hole			0,60									
Increasi	ing factors for c	oncrete	Ψ _c	[-]					(f _{ck} / 2	20) ^{0,1}				
	teristic bond res			τ _{Rk,ucr} =	(000/05)									
dependi class	ing on the conc	rete strength		τ _{Rk,cr} =				Ψc	• τ _{Rk,c}	_r (C20/	(25)			
Concre	te cone failure													
	nt parameter							;	see Ta	able C2	2			
Splittin				1						121 2 21200				
	nt parameter							;	see Ta	able C2	2			
	tion factor	o or flooded												
bore ho		e or flooded	γ _{inst}	[-]	1,4									

 $^{^{1)}}$ f_{uk} shall be taken from the specifications of reinforcing bars

CELO Injection system ResiFIX Pure Epoxy for concrete	
Performances Characteristic values of tension loads under static and quasi-static action (Reinforcing bar)	Annex C 5

²⁾ In absence of national regulation

Reinforcing bar		Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32	
Steel failure without lever arm												
Characteristic shear resistance	V ⁰ _{Rk,s}	[kN]					0,5	· A _s ·	f _{uk} 1)			
Cross section area	A _s	[mm²]	50	79	113	154	201	314	452	491	616	804
Partial factor	γ _{Ms,V}	[-]						1,5 ²⁾				
Ductility factor	k ₇	[-]	1,0									
Steel failure with lever arm												
Characteristic bending moment	M ⁰ Rk,s	[Nm]					1.2	· W _{el} ·	f _{uk} 1)			
Elastic section modulus	W _{el}	[mm³]	50	98	170	269	402	785	1357	1534	2155	3217
Partial factor	γ _{Ms,V}	[-]						1,5 ²⁾				
Concrete pry-out failure												
Factor	k ₈	[-]						2,0				
Installation factor	γ _{inst}	[-]						1,0				
Concrete edge failure	'											
Effective length of fastener	I _f	[mm]	min(h _{ef} ; 12 · d _{nom}) min(h _{ef} ; 300mm					mm)				
Outside diameter of fastener	d _{nom}	[mm]	8	10	12	14	16	20	24	25	28	32
Installation factor	γ _{inst}	[-]	1,0									

¹⁾ f_{uk} shall be taken from the specifications of reinforcing bars

CELO Injection system ResiFIX Pure Epoxy for concrete	
Performances Characteristic values of shear loads under static and quasi-static action (Reinforcing bar)	Annex C 6

²⁾ in absence of national regulation

Table C7: Displacements under tension load ¹⁾												
Threaded rod			M8	M10	M12	M16	M20	M24	M27	M30		
Uncracked concrete under static and quasi-static action												
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]	0,028	0,029	0,030	0,033	0,035	0,038	0,039	0,041		
40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,028	0,029	0,030	0,033	0,035	0,038	0,039	0,041		
Temperature range II: 60°C/35°C	δ_{N0} -factor	[mm/(N/mm²)]	0,038	0,039	0,040	0,044	0,047	0,051	0,052	0,055		
	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,047	0,049	0,051	0,055	0,059	0,064	0,067	0,070		
Temperature range III:	δ_{N0} -factor	[mm/(N/mm²)]	0,042	0,043	0,044	0,048	0,052	0,056	0,057	0,061		
70°C/43°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,052	0,054	0,056	0,061	0,065	0,070	0,074	0,077		
Cracked concrete unde	r static and q	uasi-static action	1									
Temperature range I:	δ_{N0} -factor	[mm/(N/mm²)]	0,069	0,071	0,072	0,074	0,076	0,079	0,081	0,082		
40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,193	0,115	0,122	0,128	0,135	0,142	0,155	0,171		
Temperature range II:	δ_{N0} -factor	[mm/(N/mm ²)]	0,092	0,095	0,096	0,099	0,102	0,106	0,109	0,110		
60°C/35°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,259	0,154	0,163	0,172	0,181	0,189	0,207	0,229		
Temperature range III:	δ_{N0} -factor	[mm/(N/mm²)]	0,101	0,105	0,106	0,109	0,112	0,117	0,120	0,121		
70°C/43°C	$\delta_{N\infty}$ -factor	[mm/(N/mm ²)]	0,285	0,169	0,179	0,189	0,199	0,208	0,228	0,252		

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor }\cdot\tau;$

 τ : action bond stress for tension

 $\delta_{N\infty} = \delta_{N\infty}\text{-factor }\cdot\tau;$

Table C8: Displacements under shear load¹⁾

Threaded rod		M8	M10	M12	M16	M20	M24	M27	M30		
Uncracked and cracked concrete under static and quasi-static action											
All temperature ranges	δ_{V0} -factor	[mm/kN]	0,06	0,06	0,05	0,04	0,04	0,03	0,03	0,03	
	$\delta_{V\infty}$ -factor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05	

¹⁾ Calculation of the displacement

$$\begin{split} \delta_{V0} &= \delta_{V0}\text{-factor} \ \cdot \text{V}; \\ \delta_{V\infty} &= \delta_{V\infty}\text{-factor} \ \cdot \text{V}; \end{split}$$

V: action shear load

CELO Injection system ResiFIX Pure Epoxy for concrete

Performances

Displacements under static and quasi-static action (threaded rod)

Annex C 7

Table C9: Displacements under tension load ¹⁾												
Reinforcing bar			Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32
Uncracked concrete under static and quasi-static action												
Temperature	δ_{N0} -factor	[mm/(N/mm²)]	0,028	0,029	0,030	0,031	0,033	0,035	0,038	0,038	0,040	0,043
range I: 40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,015	0,015	0,016	0,017	0,017	0,019	0,020	0,020	0,021	0,023
Temperature	δ_{N0} -factor	[mm/(N/mm²)]	0,038	0,039	0,040	0,042	0,044	0,047	0,051	0,051	0,054	0,058
range II: 60°C/35°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,047	0,049	0,051	0,053	0,055	0,059	0,065	0,065	0,068	0,072
Temperature	δ_{N0} -factor	[mm/(N/mm²)]	0,042	0,043	0,044	0,046	0,048	0,052	0,056	0,056	0,059	0,064
range III: 70°C/43°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,052	0,054	0,056	0,058	0,061	0,065	0,072	0,072	0,075	0,079
Cracked concrete	under statio	and quasi-stat	ic actio	n						2		
Temperature	δ_{N0} -factor	[mm/(N/mm²)]	0,069	0,071	0,072	0,073	0,074	0,076	0,079	0,079	0,081	0,084
range I: 40°C/24°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,115	0,122	0,128	0,135	0,142	0,155	0,171	0,171	0,181	0,194
Temperature	δ_{N0} -factor	[mm/(N/mm²)]	0,092	0,095	0,096	0,098	0,099	0,102	0,106	0,106	0,109	0,113
range II: 60°C/35°C	$\delta_{N\infty}$ -factor	[mm/(N/mm²)]	0,154	0,163	0,172	0,181	0,189	0,207	0,229	0,229	0,242	0,260
Temperature range III: 70°C/43°C	δ_{N0} -factor	[mm/(N/mm²)]	0,101	0,105	0,106	0,108	0,109	0,112	0,117	0,117	0,120	0,124
	δ _{N∞} -factor	[mm/(N/mm²)]	0,169	0,179	0,189	0,199	0,208	0,228	0,252	0,252	0,266	0,286

¹⁾ Calculation of the displacement

 $\delta_{\text{N0}} = \delta_{\text{N0}}\text{-factor} \ \cdot \tau;$

 $\tau\textsc{:}$ action bond stress for tension

 $\delta_{N\infty} = \delta_{N\infty}\text{-factor} \cdot \tau;$

Table C10: Displacements under shear load¹⁾

Reinforcing bar	Ø8	Ø 10	Ø 12	Ø 14	Ø 16	Ø 20	Ø 24	Ø 25	Ø 28	Ø 32		
Uncracked and cracked concrete under static and quasi-static action												
All temperature ranges	δ_{V0} -factor	[mm/kN]	0,06	0,05	0,05	0,04	0,04	0,04	0,03	0,03	0,03	0,03
	$\delta_{V\infty}$ -factor	[mm/kN]	0,09	0,08	0,08	0,06	0,06	0,05	0,05	0,05	0,04	0,04

¹⁾ Calculation of the displacement

 $\delta_{V0} = \delta_{V0}\text{-factor } \cdot V;$

V: action shear load

 $\delta_{V^{\infty}} = \delta_{V^{\infty}}\text{-factor }\cdot V;$

CELO Injection system ResiFIX Pure Epoxy for concrete	
Performances Displacements under static and quasi-static action (reinforcing bar)	Annex C 8