

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-15/0508 of 15 December 2020

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:	Deutsches Institut für Bautechnik
Trade name of the construction product	CELO Sleeve anchor DNBOLT
Product family to which the construction product belongs	Mechanical fastener for use in concrete
Manufacturer	CELO Befestigungssysteme GmbH Industriestraße 6 86551 Aichach DEUTSCHLAND
Manufacturing plant	Plant 11 Plant 13
This European Technical Assessment contains	12 pages including 3 annexes which form an integral part of this assessment
This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of	EAD 330232-00-0601, Edition 10/2016
This version replaces	ETA-15/0508 issued on 23 September 2015

European Technical Assessment ETA-15/0508 English translation prepared by DIBt

Page 2 of 12 | 15 December 2020

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 12 | 15 December 2020

Specific Part

1 Technical description of the product

The CELO sleeve anchor DNBOLT is an anchor made of galvanised steel which is placed into a drilled hole and anchored by torque-controlled expansion. The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	see Annex B 2 and C 1
Characteristic resistance to shear load (static and quasi-static loading)	see Annex C 2
Displacements (static and quasi-static loading)	see Annex C 1 and C 2
Characteristic resistance and displacements for seismic performance categories C1 and C2	No performance assessed
Durability	See Annex B 1

3.1 Mechanical resistance and stability (BWR 1)

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	No performance assessed

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Documents EAD No. 330232-00-0601 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1

European Technical Assessment ETA-15/0508

Page 4 of 12 | 15 December 2020

English translation prepared by DIBt

5 Technical details necessary for the implementation of the AVCP system, as provided for the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.

Issued in Berlin on 15 December 2020 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section

beglaubigt: Baderschneider

Annex A 1

Page 7 of European Technical Assessment ETA-15/0508 of 15 December 2020

English translation prepared by DIBt

Table A1: Components and materials

Item	Designation Material						
1	Screw	Steel, according EN ISO 898-1:2012, class 6.8 or 8.8					
2	Carbon steel, hardness 90-150 Hv						
3	Washer	Carbon steel, hardness > 90 Hv					
4	Cone	Carbon steel, hardness > 150 Hv					
5	Collar	Plastic					

All steel parts are zinc plated and blue passivated $\geq 5\mu m$ acc. EN ISO 4042:2018

Table A2: Dimensions

Anchor	d。	Collar length	Washer	Ø screw	Sleeve length	Screw length	sw
	[mm]	[mm]		[mm]	[mm]	[mm]	[mm]
			DIN 9021:1990-03				
DNBOLT 8	8	4,5	or	M6	≥30,5	≥45	10
			EN ISO 7093:2000				
			DIN 9021:1990-03				
DNBOLT 10	10	5,5	or	M8	≥40,5	≥60	13
			EN ISO 7093:2000				
			DIN 9021:1990-03				
DNBOLT 12	12	6,5	or	M10	≥47	≥70	17
			EN ISO 7093:2000				

CELO sleeve anchor DNBOLT

Product description

Components, materials and dimensions

Page 8 of European Technical Assessment ETA-15/0508 of 15 December 2020

English translation prepared by DIBt

Specifications of intended use

Anchorages subject to:

· Static and quasi-static loads.

Base materials:

- Compacted, reinforced or unreinforced normal weight concrete without fibres according to EN 206:2013 + A1:2016.
- Strength classes C20/25 C50/60 according to EN 206:2013 + A1:2016
- · Non-cracked concrete.

Use conditions (Environmental conditions):

· Structures subject to dry internal conditions.

Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e. g. position of the anchor relative to reinforcement or to supports, etc.).
- The anchorages are designed in accordance to EN 1992-4:2018 and Technical Report TR 055, Edition February 2018
- For effective embedment depth hef < 40 mm only statically indeterminate fixings (e.g. light-weight suspended ceilings with internal exposure) are covered by the ETA

Installation:

- Hole drilling by hammer drilling only
- Anchor installation carried out by appropriately qualified personal and under the supervision of the person responsible for technical matters of the site.
- · Positioning of the drill holes without damaging the reinforcement.

CELO sleeve anchor **DNBOLT**

Intended use Specifications Annex B 1

Table B1: Installation parameters

CELO sloguo ancher DNR	Size				
			DNBOLT 8	DNBOLT 10	DNBOLT 12
Nominal drill hole diameter	do	[mm]	8	10	12
Max. cutting diameter of drill bit	$d_{cut,max}$	[mm]	8,45	10,45	12,50
Depth of drill hole	h₁ ≥	[mm]	45	55	65
Effective embedment depth	h _{ef} ≥	[mm]	30	37	43
Setting depth	h _{nom} ≥	[mm]	40	50	60
Diameter of clearance hole in the fixture	d _f ≤	[mm]	9	12	14
Thickness of fixture	t _{fix}	[mm]	5250	5300	10300
Wrench size	SW	[mm]	10	13	17
Installation torque moment	Tinst	[Nm]	10	15	30

Table B2: Minimum thickness of concrete member, spacing and edge distance

				Size	
			DNBOLT 8	DNBOLT 10	DNBOLT 12
Minimum thickness of member	h _{min}	[mm]	100	100	110
Minimum spacing	S _{min}	[mm]	40	50	60
Minimum edge distance	C _{min}	[mm]	40	50	60

CELO sleeve anchor DNBOLT

Intended use

Installation parameters, minimum thickness, min. spacing and edge distance

Annex B 2

Deutsches Institut für Bautechnik

Table C1: Characteristic values under tension loads

			Size			
CELO sleeve anchor DNBOLT			DNBOLT 8	DNBOLT 10	DNBOLT 12	
Steel failure class 6.8					L	
Characteristic resistance	N _{Rk,s}	[kN]	12,1	22,0	34,8	
Partial factor	Υ _{Ms,N}	[-]		1,5		
Steel failure class 8.8						
Characteristic resistance	N _{Rk,s}	[kN]	16,1	29,3	46,4	
Partial factor	Υ _{Ms,N}	[-]		1,5		
Pull out failure			•			
Characteristic resistance in non-cracked	N.	[LN]	6.0	7 5	12.0	
concrete ≥ C20/25	INRk,p	[KIN]	6,0	د, ۲	12,0	
Increasing factor for concrete	ψ _c	[-]	1,0			
Installation factor	Ύinst	[-]	1,0	1,0	1,2	
Concrete cone failure			•		•	
Factor for cracked concrete	k _{cr}	[-]	No pe	rformance as	sessed	
Factor for uncracked concrete	k _{ucr}	[-]		11,0		
Effective anchorage depth	hef	[mm]	30	37	43	
Characteristic spacing	Scr,N	[mm]		3 hef		
Characteristic edge distance	C _{cr,N}	[mm]		1,5 hef		
Splitting failure			•			
Characteristic resistance	N ⁰ _{Rk,sp}	[kN]	$N_{Rk,sp}^{0} = min (N_{Rk,p}; N_{Rk,c}^{0}))$			
Spacing (splitting)	S _{cr,sp}	[mm]	180 200 240			
Edge distance (splitting)	C _{cr,sp}	[mm]	90 100 120			
Installation factor	Υ _{inst}	[-]	1,0	1,0	1,2	

¹⁾ $N^{0}_{Rk,c}$ according to EN 1998-4:2018

Table C2: Displacement under tension loads

CELO cleave ancher DNPOLT	Size				
			DNBOLT 8	DNBOLT 10	DNBOLT 12
Tension load	N	[kN]	2,5	3,3	5,7
Displacements	δ_{No}	[mm]	0,35	0,33	0,39
Displacements	δ _{N∞}	[mm]		2,15	

CELO sleeve anchor DNBOLT

Performances			
Characteristic values	under	tension	load

Displacement under tension load

Page 12 of European Technical Assessment ETA-15/0508 of 15 December 2020

English translation prepared by DIBt

Table C3: Characteristic values under shear loads

CELO sleeve anchor DNBOLT			Size			
CELO Sieeve anchor DNBOL	. 1		DNBOLT 8	DNBOLT 10	DNBOLT 12	
Steel failure without lever arm class 6.8						
Characteristic resistance	V ⁰ Rk,s	[kN]	6,0	11,0	17,4	
Partial factor	Υ _{Ms,V}	[-]		1,25		
Steel failure without lever arm class 8.8						
Characteristic resistance	V ⁰ Rk,s	[kN]	8,0	14,6	23,2	
Partial factor	Υ _{Ms,V}	[-]		1,25		
Steel failure with lever arm class 6.8				_		
Characteristic bending moment	M ⁰ Rk,s	[Nm]	9,2	22,5	44,9	
Partial factor	Υ _{Ms,V}	[-]		1,25		
Steel failure with lever arm class 8.8						
Characteristic bending moment	M ⁰ Rk,s	[Nm]	12,2	30,0	59,8	
Partial factor	$\Upsilon_{Ms,V}$	[-]		1,25		
Ductility factor	k7	[-]		0,8		
Concrete pryout failure						
k-Factor	k ₈	[-]	1,0	1,0	1,0	
Installation factor	Υ _{inst}	[-]		1,0	•	
Concrete edge failure			•			
Effective length of anchor under shear load	lf	[mm]	30	37	43	
Diameter	d _{nom}	[mm]	6	8	10	
Installation factor	Υ _{inst}	[-]		1,0		

The plastic ring may not be used for the load transmission.

Table C4: Displacement under shear loads

CELO sleeve anchor DNBOLT			Size			
			DNBOLT 8	DNBOLT 10	DNBOLT 12	
Shear load	V	[kN]	2,9	5,2	6,9	
Displacements	δ_{Vo}	[mm]	0,17	0,56	0,53	
Displacements	δγ∞	[mm]	0,26	0,84	0,80	

CELO sleeve anchor DNBOLT

Performances Characteristic values under shear load Displacement under shear load Annex C 2