

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-22/0550 of 24 October 2022

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of

Deutsches Institut für Bautechnik

CELO Concrete screw BTS in stainless steel

Mechanical fasteners for use in concrete

CELO Befestigungssysteme GmbH Industriestraße 6 86551 Aichach DEUTSCHLAND

Werk 16

19 pages including 3 annexes which form an integral part of this assessment

EAD 330232-01-0601, Edition 05/2021

European Technical Assessment ETA-22/0550 English translation prepared by DIBt

Page 2 of 19 | 24 October 2022

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Z80493.22 8.06.01-193/22

European Technical Assessment ETA-22/0550

Page 3 of 19 | 24 October 2022

English translation prepared by DIBt

Specific Part

1 Technical description of the product

The "CELO Concrete screw BTS in stainless steel" is an anchor in size 6, 8 and 10 mm made of stainless steel. The anchor is screwed into a predrilled cylindrical drill hole. The special thread of the anchor cuts an internal thread into the member while setting. The anchorage is characterised by mechanical interlock in the special thread.

Product and product description are given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the concrete screw is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the concrete screw of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance to tension load (static and quasi-static loading)	See Annex B4, C1 and C2
Characteristic resistance to shear load (static and quasi-static loading)	See Annex C1 and C2
Displacements (static and quasi-static loading)	See Annex C5
Characteristic resistance and displacements for seismic performance categorie C1	See Annex C3

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Class A1
Resistance to fire	See Annex C4

3.3 Aspects of durability linked with the Basic Works Requirements

Essential characteristic	Performance
Durability	See Annex B1

Z80493.22 8.06.01-193/22

European Technical Assessment ETA-22/0550 English translation prepared by DIBt

Page 4 of 19 | 24 October 2022

4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with European Assessment Document EAD No. 330232-01-0601 the applicable European legal act is: [96/582/EC].

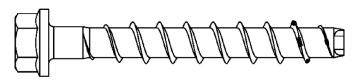
The system to be applied is: 1

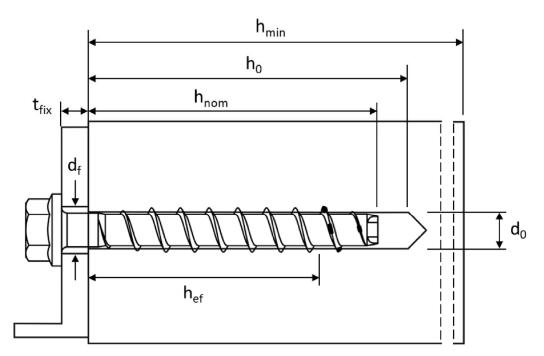
Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.

Issued in Berlin on 24 October 2022 by Deutsches Institut für Bautechnik

Dipl.-Ing. Beatrix Wittstock Head of Section *beglaubigt:*Baderschneider


Z80493.22 8.06.01-193/22


Product in installed condition

CELO concrete screw BTS in stainless steel

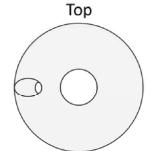
- stainless steel A4
- high corrosion resistant steel HCR

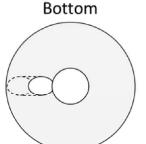
e.g. BTS concrete screw with hexagon head and fixture

 d_0 = nominal diameter of drill hole

t_{fix} = thickness of fixture

d_f = diameter of clearance hole


h_{min} = minimum thickness of member


 h_{nom} = nominal embedment depth

 h_0 = depth of drill hole

h_{ef} = effective embedment depth

Filling washer (optional) to fill annular gap

CELO concrete screw BTS in stainless steel

Product description

Product in installed condition

Annex A1

Screw types

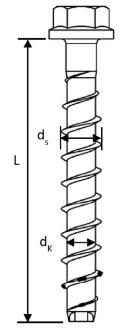
	0	Version with metric connection thr and hexagon drive e.g. BTS 8x105 N	
	(SA)	Version with washer and hexagon he.g. BTS B 8x80 SW13	nead
	(54) (5) (5) (5)	Version with washer, hexagon head TORX drive e.g. BTS B 8x80 SW13 T	
	(SA)	Version with hexagon head e.g. BTS K 8x80 SW13	
	(154) (25) (25) (25)	Version with countersunk head and e.g. BTS 8x80 TX40	d TORX drive
	(54) 0/-5	Version with pan head and TORX de.g. BTS PT 8x80 TX40	rive
	OF SM	Version with large pan head and TO e.g. BTS PTL 8x80 TX40	DRX drive
		Version with countersunk head and connection thread e.g. BTS E 6x55	
		Version with hexagon drive and connection thread e.g. BTS E 6x55	M8 SW10
		Version with internal thread and hexagon drive e.g. BTS H 6x55 M8/	10
CELO concrete se	crew BTS in stainl	ess steel	
Product descr	iption		Annex A2

_		-		-	
-		^ 1	 ١л,	3 t A	W10
ıaı	UII		 VI	ale	rial

Part	Product name	Material					
all tumos	CELO BTS A4	1.4401; 1.4404; 1.4					
all types	CELO BTS HCR	1.4529					
		Nominal characteristic steel					
Part	Product name	Yield strength f _{yk} [N/mm²]	Ultimate strength f _{uk} [N/mm²]	elongation A₅ [%]			
all types	CELO BTS A4	560	700	≤8			
all types	CELO BTS HCR	300	700	70			

Table 2: Dimensions

Anchor size 6					8			10			
Nominal embedment depth		h _{nom}	1 ¹⁾	2	3	1	2	3	1	2	3
		[mm]	35	45	55	45	55	65	55	75	85
Screw length	≤L	[mm]					500				
Core diameter	dĸ	[mm]	5,1			7,2			9,2		
Thread outer diameter	d _s	[mm]	7,6			10,5			12,5		
Thickness of filling washer	t _v	[mm]		5		5			5		


only for statically indeterminate non-structural systems (multiple use) according to EN 1992-4:2018, only in dry internal conditions

Marking:

BTS A4 **BTS HCR** Screw type: **BTS BTS** Screw type: Screw size: 10 Screw size: 10 100 Screw length: Screw length: 100 Material: A4 Material: **HCR**

CELO concrete screw BTS in stainless steel

Product description

Material, dimensions and markings

Annex A3

Specification of Intended use

Table 3: Anchorages subject to

BTS concrete screw size			6			8			10		
Nominal embedment	h _{nom}	h _{nom1} 1)	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	
depth	[mm]	35	45	55	45	55	65	55	75	85	
Static and quasi-static loads	All of a control o										
Fire exposure All sizes and all embedment depths											
C1 category - seismic	2)	ok	ok	ok	2)	ok	ok	2)	ok		

only for statically indeterminate non-structural systems (multiple use) according to EN 1992-4:2018, only in dry internal conditions

Base materials:

- Compacted reinforced and unreinforced concrete without fibers according to EN 206:2013.
- Strength classes C20/25 to C50/60 according to EN 206:2013.
- Cracked and uncracked concrete.

Use conditions (Environmental conditions):

- Concrete screws subject to dry internal conditions: all screw types.
- For all other conditions corresponding to corrosion resistance classes CRC according to EN 1993-1-4:2006 + A1:2015
 - Stainless steel according to Annex A3, screw with marking A4: CRC III
 - High corrosion resistant steel according to Annex A3, screw with marking HCR: CRC V

CELO concrete screw BTS in stainless steel	
Intended use Specification	Annex B1

²⁾ no performance assessed

Specification of Intended use - continuation

Design:

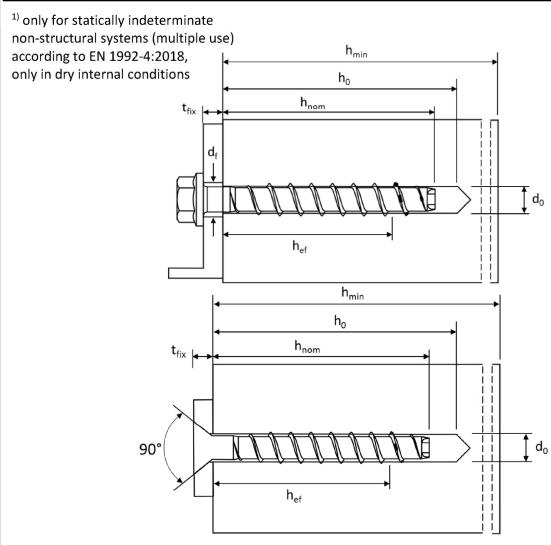
- Anchorages are to be designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are to be prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages are designed according to EN 1992-4:2018 and EOTA Technical Report TR 055, Edition February 2018.

The design for shear load according to EN 1992-4:2018, Section 6.2.2 applies for all specified diameters d_f of clearance hole in the fixture in Annex B3, Table 4.

Installation:

- Hammer drilling or hollow drilling. Hollow drilling only for size 6-10.
- Anchor installation carried out by appropriately qualified personnel and under the supervision
 of the person responsible for technical matters on site.
- In case of aborted hole: new drilling must be drilled at a minimum distance of twice the depth of aborted hole or closer, if the aborted hole is filled with high strength mortar and only if the hole is not in the direction of the oblique tensile or shear load.
- After installation further turning of the anchor must not be possible. The head of the anchor is supported in the fixture and is not damaged.
- The borehole may be filled with injection mortar CF-T 300V or ATA 2004C.
- Adjustability according to Annex B6 for sizes 6-10.
- Cleaning of borehole is not necessary, if using a hollow drill.

CELO concrete screw BTS in stainless steel


Intended use
Specification continuation

Annex B2

Table 4: Installation parameters	Table 4	Installation	parameters
----------------------------------	---------	--------------	------------

BTS concrete screw size	6			8			10				
B13 concrete screw size				0			10				
Naminal ambadmant danth		h _{nom}	h _{nom1} 1)	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
Nominal embedment depth	[mm]	35	45	55	45	55	65	55	75	85	
Nominal drill hole diameter	do	[mm]		6			8			10	
Cutting diameter of drill bit	d _{cut} ≤	[mm]	6,40			8,45			10,45		
Depth of drill hole	h ₀ ≥	[mm]	40	50	60	55	65	75	65	85	95
Clearance hole diameter	d _f ≤	[mm]	8			12			14		
Installation torque (version with connection thread)	T _{inst}	[Nm]	10			20			40		
Torque impact screw driver		[-]	Ma	ax. torq	ue acco	ording t	o manı	ufacture	er's ins	truction	าร
Torque impact screw driver		נ-]		160	·		300		450		

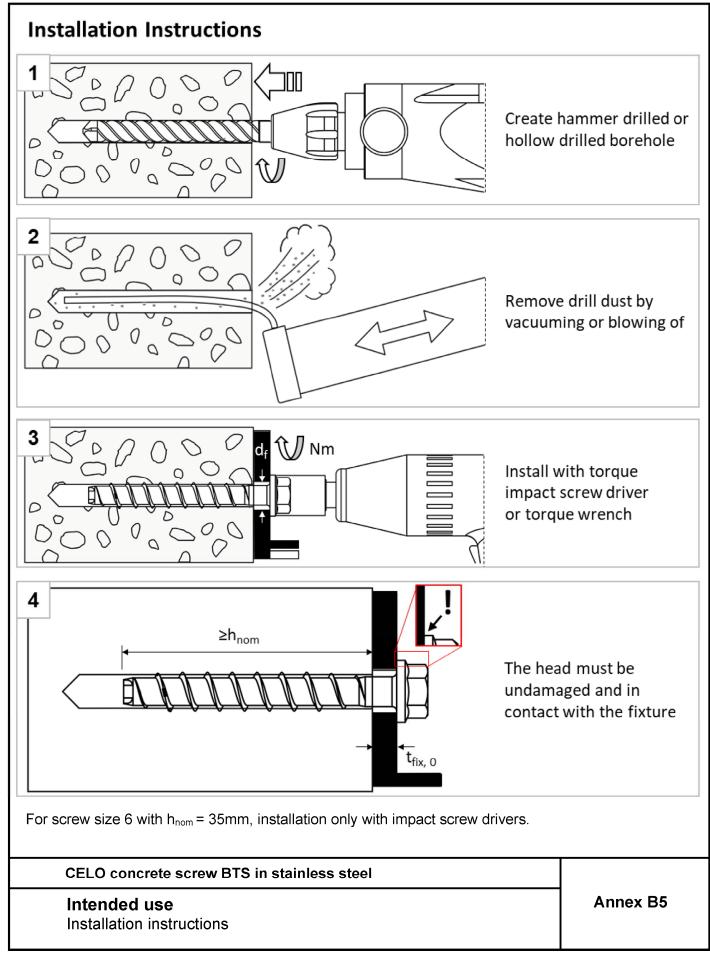
CELO concrete screw BTS in stainless steel	
Intended use	

Installation parameters

Annex B3

Table 5: Minimum thickness of member, minimum edge distance and minimum spacing

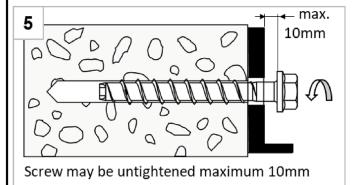
BTS concrete screw size			6				8		10		
h _{nom}			h _{nom1} 1)	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
Nominal embedment depth		[mm]	35	45	55	45	55	65	55	75	85
Minimum thickness of member	h _{min}	[mm]	80	80	100	80	100	120	100	130	130
Minimum edge distance	C _{min}	[mm]	35	35	35	35	35	35	40	40	40
Minimum spacing	S _{min}	[mm]	35	35	35	35	35	35	40	40	40

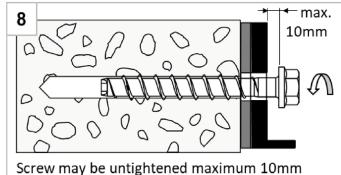

only for statically indeterminate non-structural systems (multiple use) according to EN 1992-4:2018, only in dry internal conditions

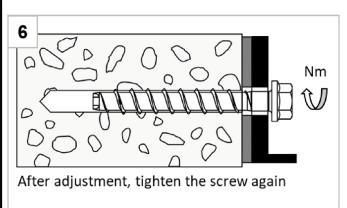
CELO concrete screw BTS in stainless steel

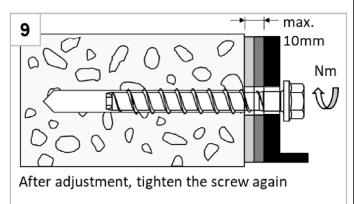
Intended use
Minimum thickness of member, minimum edge distance and minimum spacing

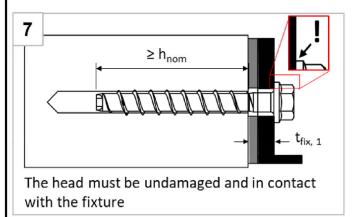
Annex B4

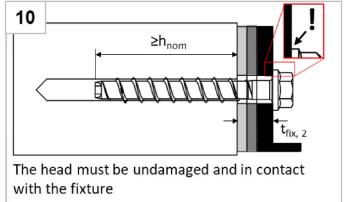





Installation Instructions – Adjustment


1. Adjustment

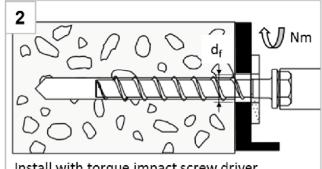



2. Adjustment

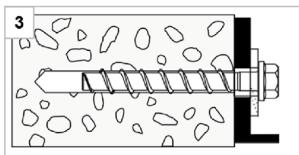
Note


The fastener can be adjusted maximum two times. The total allowed thickness of shims added during the adjustment process is 10mm. The final embedment depth after adjustment process must be larger or equal than h_{nom} .

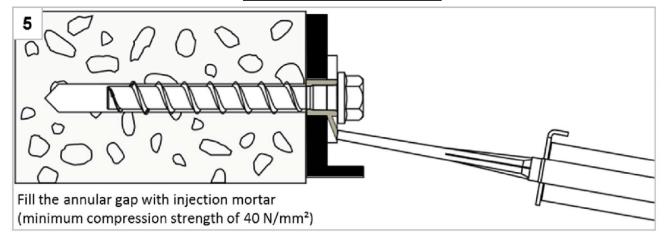
CELO concrete screw BTS in stainless steel	
Intended use Installation instructions - Adjustment	Annex B6



Installation Instructions - Filling annular gap


Positioning of fixture and filling washer

After preparing borehole (Annex B5, figure 1+2), position first fixture (1), than filling washer (2)


Install with torque impact screw driver or torque wrench

Installed condition without injected mortar in the filling washer

Filling the annular gap

Note:

For seismic loading the installation with filled and without filled annular gap is approved. Differences in performance can be found in Annex C3.

CELO concrete screw BTS in stainless steel

Intended use

Installation instructions – Filling annular gap

Annex B7

Table 6: Characteristic values for static and quasi-static loading													
BTS concrete scr	ew size				6			8			10		
Nominal embedm	ent depth	l	h _{nom} [mm]	h _{nom1} 1) 35	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1} 55	h _{nom2}	h _{nom3}	
Steel failure for	tension a	nd shea	ar load	ding									
	Characteristic tension load N		[kN]	<u></u>	14,0 27,0						45,0		
Partial factor		γ Ms,N	[-]					1,5					
Characteristic she	ar load	$V^0_{Rk,s}$	[kN]		7,0		13	3,5	17,0	22,5	34	.,O	
Partial factor		Y Ms,∨	[-]					1,25					
Ductility factor		k ₇	[-]					0,8					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			[Nm]		10,9			26,0			56,0		
Pull-out failure in uncracked concrete													
Characteristic ten load C20/25	sion	N _{Rk,p}	[kN]	3,5 ¹⁾	4,0	8,5	9,0	12,0	17,0	11,0	19,0	25,0	
Increasing	C25/30			0,35	0,50	0,38	0,50		0,30	0,50			
factor for $N_{Rk,p}$ = = $N_{Rk,p}$ (C20/25) $\cdot \psi_c$	C30/37		.,	0,35	0,50	0,38	0,50		0,30	0,50			
with	C40/50	m	[-]	0,35	0,50	0,38	0,.	50	0,30	0,50			
$\psi_c = \left(\frac{f_{ck}}{20}\right)^m$	C50/60			0,35	0,50	0,38	0,50		0,30	0,50			
Pull-out failure i	n cracked	concre	ete										
Characteristic ten	sion	N _{Rk,p}	[kN]	2,5 ¹⁾	1,5	3,0	3,0	5,5	8,0	6,0	13,0	17,0	
Increasing	C25/30			0,41	0,35			0,50			0,:	39	
factor for $N_{Rk,p} = N_{Rk,p} (C20/25) \cdot \psi_c$	C30/37		 	0,41	0,35	0,50					0,39		
with .c . m	C40/50	m	[-]	0,41	0,35	0,50					0,39		
$\psi_{\rm c} = \left(\frac{f_{\rm ck}}{20}\right)^{\rm m}$	C50/60			0,41	0,35			0,50			0,:	39	

only for statically indeterminate non-structural systems (multiple use) according to EN 1992-4:2018, only in dry internal conditions

CELO concrete screw BTS in stainless steel	
Performances Characteristic values for static and quasi-static loading	Annex C1

Table 7: C	Table 7: Characteristic values for static and quasi-static loading continuation												
BTS concre	ete screw size				6			8			10		
Nominal en	nbedment depth		h _{nom} [mm]	h _{nom1} 1) 35	h _{nom2}	h _{nom3}	h _{nom1} 45	h _{nom2}	h _{nom3}	h _{nom1} 55	h _{nom2} 75	h _{nom3} 85	
Concrete f	ailure: concrete	cone f	failure	and sp	litting	failure							
Effective er depth		h _{ef}	[mm]	25	34	42	32	41	49	40	57	65	
k-factor	cracked	k _{cr}	[-]					7,7					
K-IdCtOI	uncracked	k _{ucr}	[-]					11,0					
Concrete	spacing	S _{cr,N}	[mm]					3 x h _{ef}					
cone failure	edge distance	C _{cr,N}	[mm]	1,5 x h _{ef}									
Splitting	resistance	N ^O Rk,sp	[kN]	3,5	4,0	8,5	9,0	12,0	17,0	11,0	19,0	25,0	
failure	spacing	S _{cr,sp}	[mm]	120	160	240	200	240	290	230	280	320	
case 1	edge distance	C _{cr,sp}	[mm]	60	80	120	100	120	145	115	140	160	
Splitting	resistance	N ⁰ Rk,sp	[kN]	2)	2,5	5,5	5,5	8,0	11,0	7,0	15,0	20,0	
failure	spacing	S _{cr,sp}	[mm]	2)	116	168	128	164	196	160	224	260	
case 2	edge distance	C _{cr,sp}	[mm]	2)	58	84	64	82	98	80	114	130	
Pry-out fai	lure												
Factor for p	ry-out failure	k ₈	[-]	1,0	1	,6	2,1	2	,8		2,5		
Installation	factor	[-]					1,0						
Concrete e	edge failure												
Effective les concrete	ngth in	I _f	[mm]	35	45	55	45	55	65	55	75	85	
Nominal ou screw	ter diameter of	d_{nom}	[mm]		6			8		10			

only for statically indeterminate non-structural systems (multiple use) according to EN 1992-4:2018, only in dry internal conditions

CELO concrete screw BTS in stainless steel	
Performances Characteristic values for static and quasi-static loading continuation	Annex C2

²⁾ no performance assessed

Table 8: Seismic category C1 – Characteristic load values (only BTS B, BTS K, BTS ST, BTS,
BTS E ¹⁾ , BTS PT/PTL und BTS H ¹⁾)

BTS concrete screw size		(5	8	3	10	
Nominal embedment depth	h _{nom}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom3}	h _{nom1}	h _{nom3}
	[mm]	45	55	45	65	55	85

Steel failure for tension and shear load (version BTS B, BTS K, BTS ST, BTS, BTS E ¹⁾ , BTS PT/PTL, BTS H ¹⁾)											
Characteristic tension load	N _{Rk,s,C1}	[kN]	14,0 27,0 45,0								
Partial factor	γ _{Ms,N}	[-]	1,5								
Characteristic shear load BTS B, BTS K, BTS, BTS PT/PTL	V _{Rk,s,C1}	[kN]	3,5 4,0 8,0 10,0 14,0 16,0								
Characteristic shear load Type ST	V _{Rk,s,C1}	[kN]	2,5	2)	4,5	7,0	14,0	10,0			
Partial factor	γ _{Ms,V}	[-]			1,	25					
Without filling of the annular gap ³⁾	$lpha_{\sf gap}$	[-]	0,5								
With filling of the annular gap ⁴⁾	$lpha_{\sf gap}$	[-]			1,	,0					

I	Pull-out failure (version BTS B, BTS K, BTS ST, BTS, BTS E ¹⁾ , BTS PT/PTL, BTS H ¹⁾)									
l	Characteristic tension load in cracked concrete C20/25	N _{Rk,p,C1}	[kN]	1,5	3,0	3,0	8,5	6,0	17,0	

Concrete cone failure (version BTS B, BTS K, BTS ST, BTS, BTS E ¹⁾ , BTS PT/PTL, BTS H ¹⁾)											
Effective embedment depth	h _{ef}	[mm]	m] 34 42 32 49 40 65								
Edge distance	C _{cr,N}	[mm]	1,5 x h _{ef}								
Spacing	S _{cr,N}	[mm]	3 x h _{ef}								
Installation safety factor	γinst	[-]		1,0							

Concrete pry-out failure (version BTS B, BTS K, BTS ST, BTS E, BTS PT/PTL)										
Factor for pry-out failure k_8 [-] 1,6 2,1 2,8 2,5										
Concrete edge failure (version BTS B, BTS K, BTS ST, BTS E, BTS PT/PTL)										
Effective length in concrete	l _f	[mm]	45	55	45	65	55	85		
Nominal outer diameter of screw	d _{nom}	[mm]	6		8		10			

¹⁾ only tension load

⁴⁾ with filling of the annular gap according to annex B7

CELO concrete screw BTS in stainless steel	
Performances Seismic category C1 – Characteristic load values	Annex C3

²⁾ no performance assessed

 $^{^{3)}}$ without filling of the annular gap according to annex B5

BTS concrete scre	w size		6			8			10			
Nominal embedme	1 ¹⁾	2	3	1	2	3	1	2	3			
Nominal embedine		[mm]	35	45	55	45	55	65	55	75	8.	
Steel failure for te	nsion and	shear load										
	R30	N _{Rk,s,fi30}	[kN]		0,9			2,4			4,4	
	R60	N _{Rk,s,fi60}	[kN]		0,8			1,7			3,3	
	R90	N _{Rk,s,fi90}	[kN]		0,6			1,1			2,3	
	R120	N _{Rk,s,fi120}	[kN]		0,4			0,7			1,7	
	R30	V _{Rk,s,fi30}	[kN]		0,9			2,4			4,4	
characteristic	R60	V _{Rk,s,fi60}	[kN]		0,8			1,7			3,3	
Resistance	R90	V _{Rk,s,fi90}	[kN]		0,6			1,1		2,3		
	R120	V _{Rk,s,fi120}	[kN]		0,4			0,7		1,7		
	R30	M ⁰ Rk,s,fi30	[Nm]	0,7			2,4			5,9		
	R60	M ⁰ Rk,s,fi60	[Nm]	0,6			1,8			4,5 3,0		
	R90 R120	M ⁰ _{Rk,s,fi90}	[Nm] [Nm]	- '		1,2 0,9		2,3				
5 II . C II	1 1120	IVI RK,S,TI12U	[INIII]		0,5		l	0,5			2,3	
Pull-out failure	<u> </u>	I	I				l	l	l		l	
characteristic	R30-90	$N_{Rk,p,fi}$	[kN]	0,6	0,4	0,8	0,8	1,4	2,0	1,5	3,3	4
Resistance	R120	$N_{Rk,p,fi}$	[kN]	0,5	0,3	0,6	0,6	1,1	1,6	1,2	2,6	3
Concrete cone fail	ure											
characteristic	R30-90	N ⁰ Rk,c,fi	[kN]	0,5	1,2	2,0	1,0	1,9	2,9	1,7	4,2	5
Resistance	R120	N ⁰ Rk,c,fi	[kN]	0,4	0,9	1,6	0,8	1,5	2,3	1,4	3,4	4
Edge distance												
R30 - R120		C _{cr,fi}	[mm]					2 x h _{ef}	f			
In case of fire attacl	k from more	e than one s	ide, the	minir	num e	edge d	istanc	e shall	be ≥3	00mn	ո.	
Spacing												
R30 bis R120	S _{cr,fi}	[mm]	4 x h _{ef}									
Pry-out failure		•										
R30 bis R120		k ₈	[-]	1,0 1,6			2,1 2,8			2,5		
The anchorage dep	th has to be	increased f		concre	te by	at leas	st 30 r	nm co	mpare	d to t	he giv	en

only for statically indeterminate non-structural systems (multiple use) according to EN 1992-4:2018, only in dry internal conditions

CELO concrete screw BTS in stainless steel	
Performances Fire exposure – characteristic values of resistance	Annex C4

Table 10: [Displacements	unde	r stati	c and qua	si-static te	nsion l	oad				
BTS concre	BTS concrete screw size			(8		10			
Nominal embedment depth h _{nom}			h _{nom}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
Nominal embedment depth		[mm]	45	55	45	55	65	55	75	85	
	tension load	N	[kN]	0,72	1,45	1,63	2,74	4,06	3,04	6,22	8,46
Cracked concrete	diamlacamant	δ_{NO}	[mm]	0,19	0,27	0,27	0,53	0,45	0,26	0,58	0,61
	displacement	$\delta_{\text{N}^{\infty}}$	[mm]	0,55	0,84	0,49	0,66	0,61	0,69	0,92	1,1
	tension load	N	[kN]	2,11	4,07	4,24	5,97	8,03	5,42	9,17	12,28
Uncracked concrete	dianlacament	δ_{NO}	[mm]	0,42	0,43	0,33	0,49	0,58	0,84	0,62	0,79
Concrete	displacement	$\delta_{\text{N}\infty}$	[mm]	0.42	0.43		0.58			0.79	

Table 11: Displacements under static and quasi-static shear load

BTS concret	e screw size			(õ		8		10		
Nominal embedment depth h _{nc}			h _{nom}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}	h _{nom1}	h _{nom2}	h _{nom3}
Nominal emi	Nominal embedment depth		[mm]	45	55	45	55	65	55	75	85
Cracked and	shear load	٧	[kN]	3,3		8,6			16,2		
uncracked concrete	dia ala sana at	δ_{V0}	[mm]	1,55		2,7			2,7		
	displacement	δ_{V^∞}	[mm]	3,1		4,1			4,3		

CELO concrete screw BTS in stainless steel	
Performances Displacements under static and quasi-static loads	Annex C5